M. Krysztof, Paweł Miera, Paweł Urbański, T. Grzebyk, M. Hausladen, Rupert Schreiner
{"title":"Integrated silicon electron source for high vacuum microelectromechanical system devices","authors":"M. Krysztof, Paweł Miera, Paweł Urbański, T. Grzebyk, M. Hausladen, Rupert Schreiner","doi":"10.1116/6.0003385","DOIUrl":null,"url":null,"abstract":"The article presents the process of developing a silicon electron source designed for high-vacuum microelectromechanical system (HV MEMS) devices, i.e., MEMS electron microscope and MEMS x-ray source. Technological constraints and issues of such an electron source are explained. The transition from emitters made of carbon nanotubes to emitters made of pure silicon is described. Overall, the final electron source consists of a silicon tip emitter and a silicon gate electrode integrated on the same glass substrate. The source generates an electron beam without any carbon nanotube coverage. It generates a high and stable electron current and works after the final bonding process of an HV MEMS device.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"122 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the process of developing a silicon electron source designed for high-vacuum microelectromechanical system (HV MEMS) devices, i.e., MEMS electron microscope and MEMS x-ray source. Technological constraints and issues of such an electron source are explained. The transition from emitters made of carbon nanotubes to emitters made of pure silicon is described. Overall, the final electron source consists of a silicon tip emitter and a silicon gate electrode integrated on the same glass substrate. The source generates an electron beam without any carbon nanotube coverage. It generates a high and stable electron current and works after the final bonding process of an HV MEMS device.