arXiv: Representation Theory最新文献

筛选
英文 中文
Frobenius nil-Hecke algebras Frobenius nil-Hecke代数
arXiv: Representation Theory Pub Date : 2020-08-18 DOI: 10.2140/pjm.2021.311.455
Alistair Savage, John C. Stuart
{"title":"Frobenius nil-Hecke algebras","authors":"Alistair Savage, John C. Stuart","doi":"10.2140/pjm.2021.311.455","DOIUrl":"https://doi.org/10.2140/pjm.2021.311.455","url":null,"abstract":"To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116601436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spinoriality of orthogonal representations ofGLn(𝔽q) gln正交表示的Spinoriality(𝔽q)
arXiv: Representation Theory Pub Date : 2020-08-16 DOI: 10.2140/pjm.2021.311.369
R. Joshi, S. Spallone
{"title":"Spinoriality of orthogonal representations of\u0000GLn(𝔽q)","authors":"R. Joshi, S. Spallone","doi":"10.2140/pjm.2021.311.369","DOIUrl":"https://doi.org/10.2140/pjm.2021.311.369","url":null,"abstract":"We determine which orthogonal representations V of GL(n,q) lift to the double cover Pin(V ) of the orthogonal group O(V ). We cover all n and prime powers q, except for (n; q) =(3,4).","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121918482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Equivariant correspondences and the inductive Alperin weight condition for type $mathsf {A}$ 类型$mathsf {A}$的等变对应和归纳Alperin权条件
arXiv: Representation Theory Pub Date : 2020-08-13 DOI: 10.1090/TRAN/8463
Zhicheng Feng, Conghui Li, Jiping Zhang
{"title":"Equivariant correspondences and the inductive Alperin weight condition for type $mathsf {A}$","authors":"Zhicheng Feng, Conghui Li, Jiping Zhang","doi":"10.1090/TRAN/8463","DOIUrl":"https://doi.org/10.1090/TRAN/8463","url":null,"abstract":"In this paper, we establish the inductive Alperin weight condition for the finite simple groups of Lie type $mathsf A$, contributing to the program to prove the Alperin weight conjecture by checking the inductive condition for all finite simple groups.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124377950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Unitary representations of the Cherednik algebra: $V^*$-homology Cherednik代数的酉表示:$V^*$-同调
arXiv: Representation Theory Pub Date : 2020-08-10 DOI: 10.1007/S00209-021-02746-2
S. Fishel, Stephen Griffeth, Elizabeth Manosalva
{"title":"Unitary representations of the Cherednik algebra: $V^*$-homology","authors":"S. Fishel, Stephen Griffeth, Elizabeth Manosalva","doi":"10.1007/S00209-021-02746-2","DOIUrl":"https://doi.org/10.1007/S00209-021-02746-2","url":null,"abstract":"","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129722621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The nilpotent cone for classical Lie superalgebras 经典李超代数的幂零锥
arXiv: Representation Theory Pub Date : 2020-07-15 DOI: 10.1090/PROC/15599
L. A. Jenkins, D. Nakano
{"title":"The nilpotent cone for classical Lie superalgebras","authors":"L. A. Jenkins, D. Nakano","doi":"10.1090/PROC/15599","DOIUrl":"https://doi.org/10.1090/PROC/15599","url":null,"abstract":"In this paper the authors introduce an analog of the nilpotent cone, ${mathcal N}$, for a classical Lie superalgebra, ${mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${mathfrak g}={mathfrak g}_{bar{0}}oplus {mathfrak g}_{bar{1}}$ with $text{Lie }G_{bar{0}}={mathfrak g}_{bar{0}}$, it is shown that there are finitely many $G_{bar{0}}$-orbits on ${mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${mathcal X}$, is contained in ${mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114219200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
With Wronskian through the Looking Glass 《朗斯基镜中奇遇
arXiv: Representation Theory Pub Date : 2020-07-08 DOI: 10.3842/sigma.2021.001
V. Gorbounov, V. Schechtman
{"title":"With Wronskian through the Looking Glass","authors":"V. Gorbounov, V. Schechtman","doi":"10.3842/sigma.2021.001","DOIUrl":"https://doi.org/10.3842/sigma.2021.001","url":null,"abstract":"In the work of Mukhin and Varchenko from 2002 there was introduced a Wronskian map from the variety of full flags in a finite dimensional vector space into a product of projective spaces. We establish a precise relationship between this map and the Plucker map. This allows us to recover the result of Varchenko and Wright saying that the polynomials appearing in the image of the Wronsky map are the initial values of the tau-functions for the Kadomtsev-Petviashvili hierarchy.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"147 suppl_2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114300723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hidden Symmetry of a Branching Law 分支律的隐对称性
arXiv: Representation Theory Pub Date : 2020-06-30 DOI: 10.1007/978-981-15-7775-8_2
Toshiyuki Kobayashi, B. Speh
{"title":"A Hidden Symmetry of a Branching Law","authors":"Toshiyuki Kobayashi, B. Speh","doi":"10.1007/978-981-15-7775-8_2","DOIUrl":"https://doi.org/10.1007/978-981-15-7775-8_2","url":null,"abstract":"","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115024988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On self-extensions of irreducible modules over symmetric groups 对称群上不可约模的自扩展
arXiv: Representation Theory Pub Date : 2020-06-23 DOI: 10.1090/tran/8566
Haralampos Geranios, A. Kleshchev, Lucia Morotti
{"title":"On self-extensions of irreducible modules over symmetric groups","authors":"Haralampos Geranios, A. Kleshchev, Lucia Morotti","doi":"10.1090/tran/8566","DOIUrl":"https://doi.org/10.1090/tran/8566","url":null,"abstract":"A conjecture going back to the eighties claims that there are no non-trivial self-extensions of irreducible modules over symmetric groups if the characteristic of the ground field is not equal to $2$. We obtain some partial positive results on this conjecture.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131781287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Majorization and Spherical Functions 多数化和球面函数
arXiv: Representation Theory Pub Date : 2020-06-15 DOI: 10.1093/IMRN/RNAA390
Colin S. McSwiggen, Jonathan Novak
{"title":"Majorization and Spherical Functions","authors":"Colin S. McSwiggen, Jonathan Novak","doi":"10.1093/IMRN/RNAA390","DOIUrl":"https://doi.org/10.1093/IMRN/RNAA390","url":null,"abstract":"Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $Phi,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $Phi.$","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126571498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Scattered Representations of Complex Classical Lie Groups 复经典李群的散射表示
arXiv: Representation Theory Pub Date : 2020-06-14 DOI: 10.1093/IMRN/RNAA388
Chaoping Dong, K. Wong
{"title":"Scattered Representations of Complex Classical Lie Groups","authors":"Chaoping Dong, K. Wong","doi":"10.1093/IMRN/RNAA388","DOIUrl":"https://doi.org/10.1093/IMRN/RNAA388","url":null,"abstract":"This paper studies scattered representations of $G = SO(2n+1, mathbb{C})$, $Sp(2n, mathbb{C})$ and $SO(2n, mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115433140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信