{"title":"Frobenius nil-Hecke代数","authors":"Alistair Savage, John C. Stuart","doi":"10.2140/pjm.2021.311.455","DOIUrl":null,"url":null,"abstract":"To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frobenius nil-Hecke algebras\",\"authors\":\"Alistair Savage, John C. Stuart\",\"doi\":\"10.2140/pjm.2021.311.455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2021.311.455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2021.311.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.