Frobenius nil-Hecke代数

Alistair Savage, John C. Stuart
{"title":"Frobenius nil-Hecke代数","authors":"Alistair Savage, John C. Stuart","doi":"10.2140/pjm.2021.311.455","DOIUrl":null,"url":null,"abstract":"To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frobenius nil-Hecke algebras\",\"authors\":\"Alistair Savage, John C. Stuart\",\"doi\":\"10.2140/pjm.2021.311.455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2021.311.455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2021.311.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于任何Frobenius超代数$A$,我们将Frobenius nilCoxeter代数塔和Frobenius nilHecke代数塔联系起来。这些通过弗罗贝纽斯微分算子,自然地作用于弗罗贝纽斯多项式代数。当$A$为接地环时,我们的代数恢复到经典的nilCoxeter和nilHecke代数。当$A$是二维Clifford代数时,它们是奇nilCoxeter和奇nilHecke代数的Morita等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius nil-Hecke algebras
To any Frobenius superalgebra $A$ we associate towers of Frobenius nilCoxeter algebras and Frobenius nilHecke algebras. These act naturally, via Frobeinus divided difference operators, on Frobenius polynomial algebras. When $A$ is the ground ring, our algebras recover the classical nilCoxeter and nilHecke algebras. When $A$ is the two-dimensional Clifford algebra, they are Morita equivalent to the odd nilCoxeter and odd nilHecke algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信