The nilpotent cone for classical Lie superalgebras

L. A. Jenkins, D. Nakano
{"title":"The nilpotent cone for classical Lie superalgebras","authors":"L. A. Jenkins, D. Nakano","doi":"10.1090/PROC/15599","DOIUrl":null,"url":null,"abstract":"In this paper the authors introduce an analog of the nilpotent cone, ${\\mathcal N}$, for a classical Lie superalgebra, ${\\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\\mathfrak g}={\\mathfrak g}_{\\bar{0}}\\oplus {\\mathfrak g}_{\\bar{1}}$ with $\\text{Lie }G_{\\bar{0}}={\\mathfrak g}_{\\bar{0}}$, it is shown that there are finitely many $G_{\\bar{0}}$-orbits on ${\\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\\mathcal X}$, is contained in ${\\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the authors introduce an analog of the nilpotent cone, ${\mathcal N}$, for a classical Lie superalgebra, ${\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\mathfrak g}={\mathfrak g}_{\bar{0}}\oplus {\mathfrak g}_{\bar{1}}$ with $\text{Lie }G_{\bar{0}}={\mathfrak g}_{\bar{0}}$, it is shown that there are finitely many $G_{\bar{0}}$-orbits on ${\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\mathcal X}$, is contained in ${\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.
经典李超代数的幂零锥
本文引入了经典李超代数${\mathfrak g}$的幂零锥的一个类似物${\mathcal N}$,推广了半简单李代数的幂零锥的定义。对于具有$\text{Lie }G_{\bar{0}}={\mathfrak g}_{\bar{0}}$的经典简单李超代数${\mathfrak g}={\mathfrak g}_{\bar{0}}\oplus {\mathfrak g}_{\bar{1}}$,证明了在${\mathcal N}$上存在有限多个$G_{\bar{0}}$ -轨道。随后,作者证明了对于任何经典单李超代数,在${\mathcal N}$中都包含Duflo-Serganova交换变分${\mathcal X}$。因此,我们的有限性结果推广和推广了dufl - serganova关于交换变项的工作。最后给出了进一步的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信