{"title":"经典李超代数的幂零锥","authors":"L. A. Jenkins, D. Nakano","doi":"10.1090/PROC/15599","DOIUrl":null,"url":null,"abstract":"In this paper the authors introduce an analog of the nilpotent cone, ${\\mathcal N}$, for a classical Lie superalgebra, ${\\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\\mathfrak g}={\\mathfrak g}_{\\bar{0}}\\oplus {\\mathfrak g}_{\\bar{1}}$ with $\\text{Lie }G_{\\bar{0}}={\\mathfrak g}_{\\bar{0}}$, it is shown that there are finitely many $G_{\\bar{0}}$-orbits on ${\\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\\mathcal X}$, is contained in ${\\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nilpotent cone for classical Lie superalgebras\",\"authors\":\"L. A. Jenkins, D. Nakano\",\"doi\":\"10.1090/PROC/15599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the authors introduce an analog of the nilpotent cone, ${\\\\mathcal N}$, for a classical Lie superalgebra, ${\\\\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\\\\mathfrak g}={\\\\mathfrak g}_{\\\\bar{0}}\\\\oplus {\\\\mathfrak g}_{\\\\bar{1}}$ with $\\\\text{Lie }G_{\\\\bar{0}}={\\\\mathfrak g}_{\\\\bar{0}}$, it is shown that there are finitely many $G_{\\\\bar{0}}$-orbits on ${\\\\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\\\\mathcal X}$, is contained in ${\\\\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The nilpotent cone for classical Lie superalgebras
In this paper the authors introduce an analog of the nilpotent cone, ${\mathcal N}$, for a classical Lie superalgebra, ${\mathfrak g}$, that generalizes the definition for the nilpotent cone for semisimple Lie algebras. For a classical simple Lie superalgebra, ${\mathfrak g}={\mathfrak g}_{\bar{0}}\oplus {\mathfrak g}_{\bar{1}}$ with $\text{Lie }G_{\bar{0}}={\mathfrak g}_{\bar{0}}$, it is shown that there are finitely many $G_{\bar{0}}$-orbits on ${\mathcal N}$. Later the authors prove that the Duflo-Serganova commuting variety, ${\mathcal X}$, is contained in ${\mathcal N}$ for any classical simple Lie superalgebra. Consequently, our finiteness result generalizes and extends the work of Duflo-Serganova on the commuting variety. Further applications are given at the end of the paper.