多数化和球面函数

Colin S. McSwiggen, Jonathan Novak
{"title":"多数化和球面函数","authors":"Colin S. McSwiggen, Jonathan Novak","doi":"10.1093/IMRN/RNAA390","DOIUrl":null,"url":null,"abstract":"Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $\\Phi,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $\\Phi.$","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Majorization and Spherical Functions\",\"authors\":\"Colin S. McSwiggen, Jonathan Novak\",\"doi\":\"10.1093/IMRN/RNAA390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $\\\\Phi,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $\\\\Phi.$\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多数化是实向量上的偏序,它在从代数、组合学到概率论和统计学的许多学科中都起着重要的作用。本文考虑了任意根$\ φ,$的多数化的广义概念,并证明了它在任意有限制根$\ φ,$的黎曼对称空间上的球函数值的自然表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majorization and Spherical Functions
Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $\Phi,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $\Phi.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信