{"title":"复经典李群的散射表示","authors":"Chaoping Dong, K. Wong","doi":"10.1093/IMRN/RNAA388","DOIUrl":null,"url":null,"abstract":"This paper studies scattered representations of $G = SO(2n+1, \\mathbb{C})$, $Sp(2n, \\mathbb{C})$ and $SO(2n, \\mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scattered Representations of Complex Classical Lie Groups\",\"authors\":\"Chaoping Dong, K. Wong\",\"doi\":\"10.1093/IMRN/RNAA388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies scattered representations of $G = SO(2n+1, \\\\mathbb{C})$, $Sp(2n, \\\\mathbb{C})$ and $SO(2n, \\\\mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scattered Representations of Complex Classical Lie Groups
This paper studies scattered representations of $G = SO(2n+1, \mathbb{C})$, $Sp(2n, \mathbb{C})$ and $SO(2n, \mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.