复经典李群的散射表示

Chaoping Dong, K. Wong
{"title":"复经典李群的散射表示","authors":"Chaoping Dong, K. Wong","doi":"10.1093/IMRN/RNAA388","DOIUrl":null,"url":null,"abstract":"This paper studies scattered representations of $G = SO(2n+1, \\mathbb{C})$, $Sp(2n, \\mathbb{C})$ and $SO(2n, \\mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scattered Representations of Complex Classical Lie Groups\",\"authors\":\"Chaoping Dong, K. Wong\",\"doi\":\"10.1093/IMRN/RNAA388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies scattered representations of $G = SO(2n+1, \\\\mathbb{C})$, $Sp(2n, \\\\mathbb{C})$ and $SO(2n, \\\\mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAA388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了$G = SO(2n+1, \mathbb{C})$, $Sp(2n, \mathbb{C})$和$SO(2n, \mathbb{C})$的散射表示,它们位于具有非零狄拉克上同调的酉谱$G$的“核心”。我们描述了这些表示的Zhelobenko参数,计算它们的基数,并确定它们的自旋最低$K$-类型。我们还反驳了2015年提出的一个猜想,该猜想认为可以通过抛物归纳法从具有非零狄拉克上同调的不可约酉表示中获得酉对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattered Representations of Complex Classical Lie Groups
This paper studies scattered representations of $G = SO(2n+1, \mathbb{C})$, $Sp(2n, \mathbb{C})$ and $SO(2n, \mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信