Chemistry and Physics of Lipids最新文献

筛选
英文 中文
Effect of polyphenolic dendrimers on biological and artificial lipid membranes 多酚树枝状聚合物对生物膜和人工脂膜的影响
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-09-10 DOI: 10.1016/j.chemphyslip.2024.105444
{"title":"Effect of polyphenolic dendrimers on biological and artificial lipid membranes","authors":"","doi":"10.1016/j.chemphyslip.2024.105444","DOIUrl":"10.1016/j.chemphyslip.2024.105444","url":null,"abstract":"<div><p>The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane. The increase in the fluorescence anisotropy of DPH and TMA-DPH probes incorporated into erythrocyte membranes predicted the ability of dendrimers to affect membrane fluidity in the hydrophobic interior and hydrophilic/polar region of a lipid bilayer. The presence of caffeic acid and polyethylene glycol chains in the dendrimer structure affected the thermodynamical properties of the membrane lipid matrix.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308424000690/pdfft?md5=fc03e278a85952db1a62e469b5de1cf4&pid=1-s2.0-S0009308424000690-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of molecular interaction between intercellular lipid organization in human stratum corneum and terpenes using time-resolved synchrotron X-ray diffraction 利用时间分辨同步辐射 X 射线衍射评估人体角质层细胞间脂质组织与萜类化合物之间的分子相互作用。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-09-03 DOI: 10.1016/j.chemphyslip.2024.105435
{"title":"Evaluation of molecular interaction between intercellular lipid organization in human stratum corneum and terpenes using time-resolved synchrotron X-ray diffraction","authors":"","doi":"10.1016/j.chemphyslip.2024.105435","DOIUrl":"10.1016/j.chemphyslip.2024.105435","url":null,"abstract":"<div><p>The stratum corneum (SC) presents certain limitations for topical administration of medication, which can be overcome using penetration enhancers (PEs) such as terpene (TP). The SC is also crucial for maintaining the skin barrier and consists of two lamellar structures: the short periodicity phase (SPP) and long periodicity phase (LPP). In this study, we monitored changes in the X-ray diffraction peaks of the human SC, 30 min after TP application (neroridol, 1,8-cineol, and d-limonene). With the application of nerolidol, no significant changes were observed in the small-angle diffraction peak positions for the lamellar structure of SPP, but the integrated intensity decreased. On the contrary, when applying 1,8-cineole and d-limonene, a lower angle peak shift with broadening of the peak width of SPP diffraction peaks was observed for d-limonene than for 1,8-cineole, and the degree of peak shift and width broadening was greater for d-limonene than for 1,8-cineole. The diffraction peaks of LPP disappeared when 1,8-cineole and d-limonene were applied. These results indicate that the degree of interaction between the SC and TP differs depending on the molecular species, and d-limonene and 1,8-cineole exhibit penetration-enhancing via lamellar structure disruption of both SPP and LPP, immediately after application.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reorientation of interfacial water molecules during melting of brain sphingomyelin is associated with the phase transition of its C24:1 sphingomyelin lipids 脑鞘磷脂熔化过程中界面水分子的重新定向与其 C24:1 鞘磷脂脂质的相变有关
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-08-30 DOI: 10.1016/j.chemphyslip.2024.105434
{"title":"Reorientation of interfacial water molecules during melting of brain sphingomyelin is associated with the phase transition of its C24:1 sphingomyelin lipids","authors":"","doi":"10.1016/j.chemphyslip.2024.105434","DOIUrl":"10.1016/j.chemphyslip.2024.105434","url":null,"abstract":"<div><p>Melting of brain sphingomyelin (bSM) manifests as a broad feature in the DSC curve that encompasses the temperature range of 25 – 45 °C, with two distinguished maxima originating from the phase transitions of two the most abundant components: C24:1 (<em>T</em><sub>m,1</sub>) and C18:0 (<em>T</em><sub>m,2</sub>). While C24:1/C18:0 sphingomyelin transforms from the gel/ripple phase to the fluid/fluid phase, the dynamics of water molecules in the interfacial layer remain completely unknown. Therefore, we carried out a calorimetric (DSC), spectroscopic (temperature-dependent UV-Vis and fluorescence) and MD simulation study of bSM in the absence/presence of Laurdan® (bSM ± L) suspended in Britton-Robinson buffer with three different pH values, 4 (BRB4), 7 (BRB7) and 9 (BRB9), and of comparable ionic strength (<em>I</em> = 100 mM). According to DSC, <span><math><mover><mrow><mi>T</mi></mrow><mo>̅</mo></mover></math></span><sub>m, 1</sub> (≈ 34.5 °C/≈ 32.1 °C) and <span><math><mover><mrow><mi>T</mi></mrow><mo>̅</mo></mover></math></span><sub>m, 2</sub> (≈ 38.0 °C/≈ 37.2 °C) of bSM suspended in BRB4, BRB7, and BRB9 in the absence/presence of Laurdan® are found to be practically pH-independent. Turbidity-based data (UV-Vis) detected both qualitative and quantitative differences in the response of bSM suspended in BRB4/BRB7/BRB9 (<span><math><mover><mrow><mi>T</mi></mrow><mo>̅</mo></mover></math></span><sub>m</sub>: ∼ 35 °C/32.0 ± 0.2 °C/36.4 ± 0.4), suggesting an intricate interplay of weakening of van der Waals forces between their hydrocarbon chains and of increased hydration in the polar headgroups region during melting. The temperature-dependent response of Laurdan® reported a discontinuous, pH-dependent change in the reorientation of interfacial water molecules that coincides with the melting of C24:1 lipids (on average, <span><math><mover><mrow><mi>T</mi></mrow><mo>̅</mo></mover></math></span><sub>m (LTC/HTC)</sub>: ≈ 31.8 °C/30.6 °C/30.5 °C). MD simulations elucidated the impact of Laurdan® on a change in the physicochemical properties of bSM lipids and characterized the hydrogen bond network at the interface at 20 °C and 50 °C.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanodisc assembly from bacterial total lipid extracts 细菌总脂提取物的纳米盘组装。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-08-05 DOI: 10.1016/j.chemphyslip.2024.105425
{"title":"Nanodisc assembly from bacterial total lipid extracts","authors":"","doi":"10.1016/j.chemphyslip.2024.105425","DOIUrl":"10.1016/j.chemphyslip.2024.105425","url":null,"abstract":"<div><p>Nanodiscs are discoidal lipoproteins that have often been used as vehicles to study membrane proteins in their native configuration. Nanodiscs have been primarily made from synthetic lipids. However, nanodiscs also offer a format by which native lipids can be studied in their natural configuration. Here, we present a method to synthesize nanodiscs from bacterial total lipid extracts using the biothreat agent, <em>Yersinia pestis,</em> as a proof-of-concept. The creation of nanoparticles entirely composed of bacterial lipids supports membrane characterization and vaccine antigen discovery without the inherent safety concerns associated with live bacterial cells of this Tier 1 select agent pathogen.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308424000501/pdfft?md5=fd7f79862b351006b46d2feb143ed5e8&pid=1-s2.0-S0009308424000501-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane-targeted mechanism for amphiphilic vitamin C compounds as methicillin-resistant Staphylococcus aureus biofilm eradicating agents 两亲性维生素 C 复合物作为耐甲氧西林金黄色葡萄球菌生物膜根除剂的膜靶机制。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-08-02 DOI: 10.1016/j.chemphyslip.2024.105423
{"title":"Membrane-targeted mechanism for amphiphilic vitamin C compounds as methicillin-resistant Staphylococcus aureus biofilm eradicating agents","authors":"","doi":"10.1016/j.chemphyslip.2024.105423","DOIUrl":"10.1016/j.chemphyslip.2024.105423","url":null,"abstract":"<div><p><em>Staphylococcus aureus</em> infections and its biofilm removal is an important concern in health care management. Methicillin-resistant <em>S. aureus</em> is responsible for severe morbidity and mortality worldwide. The extensive use of disinfectants against biofilms has led to negative environmental impacts. Developing new and more potent biofilm eradication agents with minimal detrimental effects on human and environmental health is currently on the agenda. The alkyl esters of L-ascorbic acid (ASCn) are antioxidant amphiphiles, which show antimicrobial capacity against methicillin-sensitive and resistant <em>S. aureus</em> strains. ASC12 and ASC14 formulations are able to kill the persister cells of the deepest layers of the biofilm. We tested the hypothesis that the antimicrobial and antibiofilm capacity found for the ASCn emerges from a combined effect of its amphiphilic and their redox capacity. This mechanism appears related to: I) a larger diffusion capacity of the ASC12 micelles than ASC14 and ASC16 microstructures; II) the neutralization of the ASCn acid hydroxyl when the amphiphile reaches the surface of an anionic surface, followed by a rapid insertion; III) the disruption of cell membrane by alteration of membrane tension and structure and IV) ASCn accumulation in the cell membrane or biofilm extracellular matrix surfaces, reducing functional chemical groups and affecting its biological function.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition 磷脂酰丝氨酸:磷脂酰丝氨酸:关于合成、代谢和营养的全面概述。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-08-02 DOI: 10.1016/j.chemphyslip.2024.105422
{"title":"Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition","authors":"","doi":"10.1016/j.chemphyslip.2024.105422","DOIUrl":"10.1016/j.chemphyslip.2024.105422","url":null,"abstract":"<div><p>Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal stability of bivalent cation/phosphoinositide domains in model membranes 模型膜中二价阳离子/磷酸肌酸结构域的热稳定性。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-08-02 DOI: 10.1016/j.chemphyslip.2024.105424
{"title":"Thermal stability of bivalent cation/phosphoinositide domains in model membranes","authors":"","doi":"10.1016/j.chemphyslip.2024.105424","DOIUrl":"10.1016/j.chemphyslip.2024.105424","url":null,"abstract":"<div><p>As key mediators in a wide array of signaling events, phosphoinositides (PIPs) orchestrate the recruitment of proteins to specific cellular locations at precise moments. This intricate spatiotemporal regulation of protein activity often necessitates the localized enrichment of the corresponding PIP. We investigate the extent and thermal stabilities of phosphatidylinositol-4-phosphate (PI(4)P), phosphatidylinositol-4,5-bisphosphate (PI(4,5)P<sub>2</sub> and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P<sub>3</sub>) clusters with calcium and magnesium ions. We observe negligible or minimal clustering of all examined PIPs in the presence of Mg<sup>2+</sup> ions. While PI(4)P shows in the presence of Ca<sup>2+</sup> no clustering, PI(4,5)P<sub>2</sub> forms with Ca<sup>2+</sup> strong clusters that exhibit stablity up to at least 80°C. The extent of cluster formation for the interaction of PI(3,4,5)P<sub>3</sub> with Ca<sup>2+</sup> is less than what was observed for PI(4,5)P<sub>2</sub>, yet we still observe some clustering up to 80°C. Given that cholesterol has been demonstrated to enhance PIP clustering, we examined whether bivalent cations and cholesterol synergistically promote PIP clustering. We found that the interaction of Mg<sup>2+</sup> or Ca<sup>2+</sup> with PI(4)P remains extraordinarily weak, even in the presence of cholesterol. In contrast, we observe synergistic interaction of cholesterol and Ca<sup>2+</sup> with PI(4,5)P<sub>2</sub>. Also, in the presence of cholesterol, the interaction of Mg<sup>2+</sup> with PI(4,5)P<sub>2</sub> remains weak. PI(3,4,5)P<sub>3</sub> does not show strong clustering with cholesterol for the experimental conditions of our study and the interaction with Ca<sup>2+</sup> and Mg<sup>2+</sup> was not influenced by the presence of cholesterol.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy Magainin 2 诱导的脂质双分子层纳米级扰动:原子力显微镜成像和力谱分析的启示。
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-07-26 DOI: 10.1016/j.chemphyslip.2024.105421
{"title":"Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy","authors":"","doi":"10.1016/j.chemphyslip.2024.105421","DOIUrl":"10.1016/j.chemphyslip.2024.105421","url":null,"abstract":"<div><p>This study explores the impact of the antimicrobial peptide magainin 2 (Mag2) on lipid bilayers with varying compositions. We employed high-resolution atomic force microscopy (AFM) to reveal a dynamic spectrum of structural changes induced by Mag2. Our AFM imaging unveiled distinct structural alterations in zwitterionic POPC bilayers upon Mag2 exposure, notably the formation of nanoscale depressions within the bilayer surface, which we term as \"surface pores\" to differentiate them from transmembrane pores. These surface pores are characterized by a limited depth that does not appear to fully traverse the bilayer and reach the opposing leaflet. Additionally, our AFM-based force spectroscopy investigation on POPC bilayers revealed a reduction in bilayer puncture force (F<sub>P</sub>) and Young's modulus (E) upon Mag2 interaction, indicating a weakening of bilayer stability and increased flexibility, which may facilitate peptide insertion. The inclusion of anionic POPG into POPC bilayers elucidated its modulatory effects on Mag2 activity, highlighting the role of lipid composition in peptide-bilayer interactions. In contrast to surface pores, Mag2 treatment of <em>E. coli</em> total lipid extract bilayers resulted in increased surface roughness, which we describe as a fluctuation-like morphology. We speculate that the weaker cohesive interactions between heterogeneous lipids in <em>E. coli</em> bilayers may render them more susceptible to Mag2-induced perturbations. This could lead to widespread disruptions manifested as surface fluctuations throughout the bilayer, rather than the formation of well-defined pores. Together, our findings of nanoscale bilayer perturbations provide useful insights into the molecular mechanisms governing Mag2-membrane interactions.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingolipidomic profiling of human Dental Pulp Stem Cells undergoing osteogenic differentiation 人牙髓干细胞成骨分化过程中的鞘脂组特征分析
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-07-23 DOI: 10.1016/j.chemphyslip.2024.105420
{"title":"Sphingolipidomic profiling of human Dental Pulp Stem Cells undergoing osteogenic differentiation","authors":"","doi":"10.1016/j.chemphyslip.2024.105420","DOIUrl":"10.1016/j.chemphyslip.2024.105420","url":null,"abstract":"<div><p>It is now recognized that sphingolipids are involved in the regulation and pathophysiology of several cellular processes such as proliferation, migration, and survival. Growing evidence also implicates them in regulating the behaviour of stem cells, the use of which is increasingly finding application in regenerative medicine. A shotgun lipidomic study was undertaken to determine whether sphingolipid biomarkers exist that can regulate the proliferation and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). Sphingolipids were extracted and identified by direct infusion into an electrospray mass spectrometer. By using cells cultured in osteogenic medium and in medium free of osteogenic stimuli, as a control, we analyzed and compared the SPLs profiles. Both cellular systems were treated at different times (72 hours, 7 days, and 14 days) to highlight any changes in the sphingolipidomic profiles in the subsequent phases of the differentiation process. Signals from sphingolipid species demonstrating clear differences were selected, their relative abundance was determined, and statistical differences were analyzed. Thus, our work suggests a connection between sphingolipid metabolism and hDPSC osteogenic differentiation and provides new biomarkers for improving hDPSC-based orthopaedic regenerative medicine.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308424000458/pdfft?md5=42cc6de6007f08d6dad5967e3a8ea212&pid=1-s2.0-S0009308424000458-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating a model membrane of sphingomyelin by a tricyclic antidepressant drug 用一种三环类抗抑郁药物调节鞘磷脂模型膜
IF 3.4 3区 生物学
Chemistry and Physics of Lipids Pub Date : 2024-07-02 DOI: 10.1016/j.chemphyslip.2024.105419
Devansh Kaushik , Prashant Hitaishi , Ashwani Kumar , Debasis Sen , Syed M. Kamil , Sajal K. Ghosh
{"title":"Modulating a model membrane of sphingomyelin by a tricyclic antidepressant drug","authors":"Devansh Kaushik ,&nbsp;Prashant Hitaishi ,&nbsp;Ashwani Kumar ,&nbsp;Debasis Sen ,&nbsp;Syed M. Kamil ,&nbsp;Sajal K. Ghosh","doi":"10.1016/j.chemphyslip.2024.105419","DOIUrl":"10.1016/j.chemphyslip.2024.105419","url":null,"abstract":"<div><p>Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信