{"title":"Cholesterol and related sterols differentially modulate lipid domain dynamics in model membranes: A dual-probe analysis of domain-specific effects","authors":"Jesus Ayala-Sanmartin , Antonin Lamazière","doi":"10.1016/j.chemphyslip.2025.105550","DOIUrl":null,"url":null,"abstract":"<div><div>The role of cholesterol in the organization and ordering of membrane domains has been well established over the past decades. However, the involvement of cholesterol precursors and byproduct sterols in modulating the physicochemical properties of cell membranes remains less thoroughly explored. In this study, we investigated the effects of cholesterol, two hydroxylated catabolites (24-hydroxycholesterol and 25-hydroxycholesterol), and two biosynthesis precursors (desmosterol and lanosterol) on model of liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains. Membrane ordering and molecular mobility were assessed using two fluorescent probes; Laurdan, which senses polarity near the membrane aqueous interface and cholesterol-pyrene, which senses ordering closer to the center of the membrane bilayer. The results showed that Laurdan can distinguish between environmental polarity and the contribution of membrane domains. The probe mobility varied depending on the sterol and did not strictly correlate with membrane order. Cholesterol–pyrene revealed that the sterols induce varying degrees of ordering around the bilayer center. A notable observation in Ld membranes using different probes was that the ordering effect of sterols was similar near the lipid head groups and at the center of the bilayer. Hydroxycholesterols exhibited a low ordering effect, whereas cholesterol and desmosterol induced a strong effect. In contrast, in Lo membranes, hydroxycholesterols produced a strong ordering effect near the head groups but a reduced effect near the bilayer center.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"273 ","pages":"Article 105550"},"PeriodicalIF":2.8000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000866","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of cholesterol in the organization and ordering of membrane domains has been well established over the past decades. However, the involvement of cholesterol precursors and byproduct sterols in modulating the physicochemical properties of cell membranes remains less thoroughly explored. In this study, we investigated the effects of cholesterol, two hydroxylated catabolites (24-hydroxycholesterol and 25-hydroxycholesterol), and two biosynthesis precursors (desmosterol and lanosterol) on model of liquid-ordered (Lo) and liquid-disordered (Ld) membrane domains. Membrane ordering and molecular mobility were assessed using two fluorescent probes; Laurdan, which senses polarity near the membrane aqueous interface and cholesterol-pyrene, which senses ordering closer to the center of the membrane bilayer. The results showed that Laurdan can distinguish between environmental polarity and the contribution of membrane domains. The probe mobility varied depending on the sterol and did not strictly correlate with membrane order. Cholesterol–pyrene revealed that the sterols induce varying degrees of ordering around the bilayer center. A notable observation in Ld membranes using different probes was that the ordering effect of sterols was similar near the lipid head groups and at the center of the bilayer. Hydroxycholesterols exhibited a low ordering effect, whereas cholesterol and desmosterol induced a strong effect. In contrast, in Lo membranes, hydroxycholesterols produced a strong ordering effect near the head groups but a reduced effect near the bilayer center.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.