Bamboo charcoal mitigates oxidised LDL-induced foam cell formation via molecular interaction and adsorption: Evidence from in silico and in vitro studies
Mutaman Hussein Abdullah , Ahmad Naqib Shuid , Mohd Yusmaidie Aziz , Muhammad Azrul Zabidi , Muhammad Mahyiddin Ramli , Rafeezul Mohamed
{"title":"Bamboo charcoal mitigates oxidised LDL-induced foam cell formation via molecular interaction and adsorption: Evidence from in silico and in vitro studies","authors":"Mutaman Hussein Abdullah , Ahmad Naqib Shuid , Mohd Yusmaidie Aziz , Muhammad Azrul Zabidi , Muhammad Mahyiddin Ramli , Rafeezul Mohamed","doi":"10.1016/j.chemphyslip.2025.105528","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis is partially driven by the accumulation of oxidised low-density lipoprotein (oxLDL), which facilitates foam cell formation and vascular inflammation. This research examines the efficacy of bamboo charcoal (BC) as a bioactive agent for neutralising oxLDL using both <em>in silico</em> and <em>in vitro</em> methodologies. Molecular docking demonstrated significant binding affinities between BC and essential constituents of oxLDL, such as oxidised cholesterol and apolipoprotein B-100, facilitated by π–π stacking and electrostatic interactions. Molecular dynamics simulations demonstrated the stability of these complexes over 300 ns, indicating sustained molecular interactions. Quantum chemical calculations employing density functional theory showed a narrow HOMO–LUMO gap of 0.45 eV and a significant dipole moment of approximately 45 D, underscoring the reactive and polar characteristics of BC. Electrostatic potential mapping and thermodynamic analyses provided additional evidence for BC's spontaneous and stable binding to oxLDL components. The Oil Red O staining and total cholesterol estimation assays were conducted on oxLDL-treated RAW 264.7 macrophages <em>in vitro</em> indicated that BC significantly decreased macrophage-derived foam cell formation, thereby confirming its ability to reduce oxLDL-induced lipid accumulation. The findings suggest that BC functions as a physical adsorbent and a participant in direct chemical interactions with oxLDL, providing a dual-action therapeutic approach to atherosclerosis.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"271 ","pages":"Article 105528"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000647","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is partially driven by the accumulation of oxidised low-density lipoprotein (oxLDL), which facilitates foam cell formation and vascular inflammation. This research examines the efficacy of bamboo charcoal (BC) as a bioactive agent for neutralising oxLDL using both in silico and in vitro methodologies. Molecular docking demonstrated significant binding affinities between BC and essential constituents of oxLDL, such as oxidised cholesterol and apolipoprotein B-100, facilitated by π–π stacking and electrostatic interactions. Molecular dynamics simulations demonstrated the stability of these complexes over 300 ns, indicating sustained molecular interactions. Quantum chemical calculations employing density functional theory showed a narrow HOMO–LUMO gap of 0.45 eV and a significant dipole moment of approximately 45 D, underscoring the reactive and polar characteristics of BC. Electrostatic potential mapping and thermodynamic analyses provided additional evidence for BC's spontaneous and stable binding to oxLDL components. The Oil Red O staining and total cholesterol estimation assays were conducted on oxLDL-treated RAW 264.7 macrophages in vitro indicated that BC significantly decreased macrophage-derived foam cell formation, thereby confirming its ability to reduce oxLDL-induced lipid accumulation. The findings suggest that BC functions as a physical adsorbent and a participant in direct chemical interactions with oxLDL, providing a dual-action therapeutic approach to atherosclerosis.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.