Aritz B. García-Arribas , Alicia Alonso , Félix M. Goñi
{"title":"The puzzle of sphingolipids and cholesterol under the atomic force microscope: bilayer thicknesses and breakthrough forces","authors":"Aritz B. García-Arribas , Alicia Alonso , Félix M. Goñi","doi":"10.1016/j.chemphyslip.2025.105527","DOIUrl":null,"url":null,"abstract":"<div><div>A variety of studies published in the last decades in the field of lipid biophysics deal with the <em>puzzle</em> regarding the relationship between the signaling power of bioactive lipids (sphingolipids) and their capacity to induce lipid membrane heterogeneity (domains). Advances in technology, particularly Atomic Force Microscopy (AFM), have provided a solid contribution in this regard. Moreover, supported planar bilayers (SPB) have become an established membrane model in the study of lipid-lipid interactions. However, in spite of the large amount of published results in this field, the data remain scattered, and a coherent collection that allows easy access to the investigator is missing. This review summarizes the relevant results obtained in our laboratory through the use of AFM under comparable experimental conditions, offering a collection of data on supported lipid bilayer thicknesses and breakthrough forces. An extensive list of lipid compositions including phospholipids, cholesterol and sphingolipids (sphingomyelins, ceramides), at varying molecular ratios, has been considered.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"271 ","pages":"Article 105527"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000635","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A variety of studies published in the last decades in the field of lipid biophysics deal with the puzzle regarding the relationship between the signaling power of bioactive lipids (sphingolipids) and their capacity to induce lipid membrane heterogeneity (domains). Advances in technology, particularly Atomic Force Microscopy (AFM), have provided a solid contribution in this regard. Moreover, supported planar bilayers (SPB) have become an established membrane model in the study of lipid-lipid interactions. However, in spite of the large amount of published results in this field, the data remain scattered, and a coherent collection that allows easy access to the investigator is missing. This review summarizes the relevant results obtained in our laboratory through the use of AFM under comparable experimental conditions, offering a collection of data on supported lipid bilayer thicknesses and breakthrough forces. An extensive list of lipid compositions including phospholipids, cholesterol and sphingolipids (sphingomyelins, ceramides), at varying molecular ratios, has been considered.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.