The puzzle of sphingolipids and cholesterol under the atomic force microscope: bilayer thicknesses and breakthrough forces

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aritz B. García-Arribas , Alicia Alonso , Félix M. Goñi
{"title":"The puzzle of sphingolipids and cholesterol under the atomic force microscope: bilayer thicknesses and breakthrough forces","authors":"Aritz B. García-Arribas ,&nbsp;Alicia Alonso ,&nbsp;Félix M. Goñi","doi":"10.1016/j.chemphyslip.2025.105527","DOIUrl":null,"url":null,"abstract":"<div><div>A variety of studies published in the last decades in the field of lipid biophysics deal with the <em>puzzle</em> regarding the relationship between the signaling power of bioactive lipids (sphingolipids) and their capacity to induce lipid membrane heterogeneity (domains). Advances in technology, particularly Atomic Force Microscopy (AFM), have provided a solid contribution in this regard. Moreover, supported planar bilayers (SPB) have become an established membrane model in the study of lipid-lipid interactions. However, in spite of the large amount of published results in this field, the data remain scattered, and a coherent collection that allows easy access to the investigator is missing. This review summarizes the relevant results obtained in our laboratory through the use of AFM under comparable experimental conditions, offering a collection of data on supported lipid bilayer thicknesses and breakthrough forces. An extensive list of lipid compositions including phospholipids, cholesterol and sphingolipids (sphingomyelins, ceramides), at varying molecular ratios, has been considered.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"271 ","pages":"Article 105527"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000635","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A variety of studies published in the last decades in the field of lipid biophysics deal with the puzzle regarding the relationship between the signaling power of bioactive lipids (sphingolipids) and their capacity to induce lipid membrane heterogeneity (domains). Advances in technology, particularly Atomic Force Microscopy (AFM), have provided a solid contribution in this regard. Moreover, supported planar bilayers (SPB) have become an established membrane model in the study of lipid-lipid interactions. However, in spite of the large amount of published results in this field, the data remain scattered, and a coherent collection that allows easy access to the investigator is missing. This review summarizes the relevant results obtained in our laboratory through the use of AFM under comparable experimental conditions, offering a collection of data on supported lipid bilayer thicknesses and breakthrough forces. An extensive list of lipid compositions including phospholipids, cholesterol and sphingolipids (sphingomyelins, ceramides), at varying molecular ratios, has been considered.
原子力显微镜下鞘脂和胆固醇之谜:双层厚度和突破力。
在过去的几十年里,脂质生物物理学领域发表了许多关于生物活性脂质(鞘脂)的信号传导能力与其诱导脂质膜非均质性(结构域)的能力之间关系的研究。技术的进步,特别是原子力显微镜(AFM),在这方面提供了坚实的贡献。此外,支撑平面双层膜(SPB)已成为研究脂质相互作用的一种成熟的膜模型。然而,尽管在这一领域发表了大量的结果,但数据仍然是分散的,并且缺少一个便于研究者访问的连贯的收集。本文总结了我们实验室在可比实验条件下使用AFM获得的相关结果,提供了支持脂质双分子层厚度和突破力的数据集合。广泛的脂质组成,包括磷脂,胆固醇和鞘脂(鞘磷脂,神经酰胺),在不同的分子比例,已被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry and Physics of Lipids
Chemistry and Physics of Lipids 生物-生化与分子生物学
CiteScore
7.60
自引率
2.90%
发文量
50
审稿时长
40 days
期刊介绍: Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications. Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信