Chem最新文献

筛选
英文 中文
Kinetic sieving separation of a gating macrocyclic crystal for purification of propylene 用于提纯丙烯的门控大环晶体的动力学筛分分离技术
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.06.007
{"title":"Kinetic sieving separation of a gating macrocyclic crystal for purification of propylene","authors":"","doi":"10.1016/j.chempr.2024.06.007","DOIUrl":"10.1016/j.chempr.2024.06.007","url":null,"abstract":"<div><div>Finding an energy-efficient alternative to cryogenic distillation for the room temperature, pressure-swing-adsorptive separation of propylene/propane (C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub>) is challenging due to their physiochemical similarity. Herein, we report a gating macrocyclic crystal facilely prepared by the recrystallization of a macrocyclic arene (i.e., naphthyl-hexnutarene), which exhibits outstanding separation capabilities for C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub>, with a remarkable kinetic selectivity of 76.7 and fast C<sub>3</sub>H<sub>6</sub> adsorption kinetics with a diffusional time constant of 0.1727 min<sup>−1</sup>. The achievement is attributed to the transient motions of a gating methoxy group on the macrocycle that extend toward the contracted pore apertures, effectively amplifying the subtle distinction in guest transport. Furthermore, this crystal demonstrates great potential in actual pressure swing adsorption processes, showcasing energy-saving and efficient regeneration, as evidenced by a low heat of adsorption of 15.4 kJ mol<sup>−1</sup> for C<sub>3</sub>H<sub>6</sub> and full recovery of adsorption capacity through dynamic vacuum at room temperature, together with merited exclusions of co-present C<sub>2</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub>/CH<sub>4</sub>/CO<sub>2</sub>/N<sub>2</sub> for C<sub>3</sub>H<sub>6</sub> purification.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3148-3158"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing backbone organization and photovoltaic performance of M-series acceptors by using partially fluorinated side chains 通过使用部分氟化侧链增强 M 系列受体的骨架组织和光伏性能
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.06.005
{"title":"Enhancing backbone organization and photovoltaic performance of M-series acceptors by using partially fluorinated side chains","authors":"","doi":"10.1016/j.chempr.2024.06.005","DOIUrl":"10.1016/j.chempr.2024.06.005","url":null,"abstract":"<div><div><span><span>Side-chain fluorination<span> of nonfullerene acceptors (NFAs) has been rarely reported to enhance their photovoltaic performance, although it may improve their backbone organization and </span></span>carrier mobilities. Here, we design new partially fluorinated side chains and incorporate them into M-series NFAs, which are featured with a ladder-type heteroheptacene-cored skeleton without </span><em>sp</em><sup>3</sup><span><span>-hybridized carbons. Compared with the traditional M-series acceptor with non-fluorinated side chains (MC7F0), the NFA with partially fluorinated side chains (MC7F3) shows down-shifted energy levels, reduced miscibility, and more importantly, improved backbone organization, thereby leading to the formation of a 3D network packing structure with enhanced carrier transport. Consequently, the MC7F3-based device exhibits a power conversion efficiency of 17.61% and an excellent fill factor of 79.48%, both of which are among the best values for all A-D-A-type NFAs reported so far. The results highlight that side-chain fluorination can efficiently enhance π-conjugated backbone organization, improve intermolecular interaction, increase </span>electron mobilities, and boost photovoltaic performance of NFAs.</span></div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3131-3147"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroreduction of alkaline/natural seawater: Self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes 碱性/天然海水的电还原:自清洁铂/碳阴极和 H2 与氢氧化镁纳米片的现场共合成
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.05.018
{"title":"Electroreduction of alkaline/natural seawater: Self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes","authors":"","doi":"10.1016/j.chempr.2024.05.018","DOIUrl":"10.1016/j.chempr.2024.05.018","url":null,"abstract":"<div><div><span>Distributed coastal/offshore seawater splitting plants can facilitate H</span><sub>2</sub><span><span>-based economy’s global deployment. Increasingly, studies emerge mostly focusing on inhibiting anodic oxidation of </span>halide<span><span> ions. Equally tricky cathodic precipitation in natural seawater<span> reduction (NSR) is neglected due to the use of alkaline seawater in most studies. Herein, we explore possible strategies (introducing a proton sponge to change cathodic </span></span>microenvironments, breaking local OH</span></span><sup>−</sup> gradients, employing self-cleaning cathodes) to alleviate surface precipitation. We introduce a famous H<sub>2</sub> evolution-active metal, Pt, onto a self-cleaning carbon support with H<sub>2</sub> gas evacuation capability. Our proposed binder-free Pt/carbon cathode is more robust than many previous Pt/C cathodes for NSR. Moreover, we highlight possibilities of co-electrosynthesizing nano-sized Mg hydroxides and H<sub>2</sub> from natural seawater. This work suggests that designs of local environments, pH gradient disruption, and/or cathode architecture-based gas/liquid flows may suppress surface precipitation. We demonstrate in detail the various issues in NSR and possible solutions.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3067-3087"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism 操作电化学核磁共振光谱揭示了水辅助甲酸盐形成机制
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.06.001
{"title":"Operando electrochemical NMR spectroscopy reveals a water-assisted formate formation mechanism","authors":"","doi":"10.1016/j.chempr.2024.06.001","DOIUrl":"10.1016/j.chempr.2024.06.001","url":null,"abstract":"<div><div>The affinity of oxygen (O)-bound species is a key factor in CO<sub>2</sub> reduction (CO<sub>2</sub>R) reactions (including C<sub>1</sub> and C<sub>2+</sub> products), although existing experimental methods cannot quantitatively track the O atoms active within CO<sub>2</sub>R reactions in real time. Among the diversified products from CO<sub>2</sub>R reactions, the formate (HCOO<sup>−</sup>) possesses the highest profit per mole of electrons. Here, we report an <span><em>operando</em></span><span> electrochemical nuclear magnetic resonance (NMR) method, which allows to quantitatively describe the complex species containing O atoms during the electrochemical CO</span><sub>2</sub>R reactions. Based on Cu and bimetallic Cu-based materials (Bi<sub>2</sub>CuO<sub>4</sub> and In<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>) systems, we found that by introducing Bi and In metal adsorption sites, the O atoms of adsorbed H<sub>2</sub>O can directly involve in the formation of HCOO<sup>−</sup> through a water-assisted mechanism (∗COOH<sup>−</sup><span> regeneration), thereby improving the selectivity of liquid HCOO</span><sup>−</sup> product mostly from 34.2% to 98%. This strategy gives valuable insights into the design of HCOO<sup>−</sup>-favored catalysts.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3114-3130"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the role of cathode identity: Voltage-dependent reversibility of anode-free batteries 阐明阴极特性的作用:无阳极电池的电压可逆性
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.06.008
{"title":"Elucidating the role of cathode identity: Voltage-dependent reversibility of anode-free batteries","authors":"","doi":"10.1016/j.chempr.2024.06.008","DOIUrl":"10.1016/j.chempr.2024.06.008","url":null,"abstract":"<div><div><span><span><span>The cathode material in a lithium (Li) battery determines the system cost, </span>energy density, and thermal stability. In anode-free batteries, the cathode also serves as the source of Li for </span>electrodeposition, thus impacting the reversibility of plating and stripping. Here, we show that the reason LiNi</span><sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathodes deliver lower Coulombic efficiencies than LiFePO<sub>4</sub> (LFP) is the formation of tortuous Li deposits, acidic species in the electrolyte, and accumulation of “dead” Li<sup>0</sup><span>. Batteries containing an LFP cathode generate dense Li deposits that can be reversibly stripped, but Li is lost to the solid electrolyte interphase (SEI) and corrosion according to </span><span><em>operando</em></span> <sup>7</sup>Li NMR, which seemingly “revives” dead Li<sup>0</sup>. X-ray photoelectron spectroscopy (XPS) and <em>in situ</em> <sup>19</sup>F/<sup>1</sup>H NMR indicate that these differences arise because upper cutoff voltage alters electrolyte decomposition, where low-voltage LFP cells prevent anodic decomposition, ultimately mitigating the formation of protic species that proliferate upon charging NMC811.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3159-3183"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic reduction of nitrogen oxide species to ammonia 电催化氧化氮还原成氨
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.07.006
Huimin Liu , Lichen Bai , Arno Bergmann , Beatriz Roldan Cuenya , Jingshan Luo
{"title":"Electrocatalytic reduction of nitrogen oxide species to ammonia","authors":"Huimin Liu ,&nbsp;Lichen Bai ,&nbsp;Arno Bergmann ,&nbsp;Beatriz Roldan Cuenya ,&nbsp;Jingshan Luo","doi":"10.1016/j.chempr.2024.07.006","DOIUrl":"10.1016/j.chempr.2024.07.006","url":null,"abstract":"<div><div>The nitrogen cycle is one of the most important biochemical cycles. However, the development of human society has led to a substantial release of nitrogen oxide species, both as ions (NO<sub>x</sub><sup>−</sup>) and gases (NO<sub>x</sub>), into the environment, causing a considerable burden on the natural denitrification processes. Electrocatalytic reduction of NO<sub>x</sub><sup>−</sup> and NO<sub>x</sub> emerges as a promising approach to transform these waste products into valuable ammonia, thereby contributing to the restoration of the nitrogen cycle. This review provides a concise overview of recent advances in electrocatalytic NO<sub>x</sub><sup>−</sup> and NO<sub>x</sub> reduction to ammonia, including detailed reaction mechanisms, catalyst development strategies based on both theoretical and experimental results, and the design and selection of electrolytic cells. Furthermore, it highlights key challenges associated with scaling up the reaction from laboratory-scale to practical industrial-scale application and explores potential opportunities to upgrade this reaction.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 2963-2986"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineering of syrbactin megasynthetases for immunoproteasome inhibitor production 用于生产免疫蛋白酶体抑制剂的西林杆菌巨合成酶生物工程
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.07.013
Leonard Präve , Wolfgang Kuttenlochner , Werner W.A. Tabak , Chiara Langer , Markus Kaiser , Michael Groll , Helge B. Bode
{"title":"Bioengineering of syrbactin megasynthetases for immunoproteasome inhibitor production","authors":"Leonard Präve ,&nbsp;Wolfgang Kuttenlochner ,&nbsp;Werner W.A. Tabak ,&nbsp;Chiara Langer ,&nbsp;Markus Kaiser ,&nbsp;Michael Groll ,&nbsp;Helge B. Bode","doi":"10.1016/j.chempr.2024.07.013","DOIUrl":"10.1016/j.chempr.2024.07.013","url":null,"abstract":"<div><div>The natural product (NP) class of syrbactins are potent proteasome inhibitors produced by hybrids of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we describe the stepwise reassembly of an entire NRPS/PKS hybrid to produce a new syrbactin derivative by utilizing the recently described “eXchange Unit between Thiolation domains” (XUTs) approach. Remarkably, XUT-based engineering allowed the direct assembly of PKS and NRPS modules to introduce an α,β-unsaturated Michael system in a macrolactam moiety, which represents the inhibitory warhead of syrbactins. The novel derivative was produced in <em>E. coli</em>, isolated, and examined for its ability to inhibit yeast (yCP), human constitutive (cCP), and immunoproteasome (iCP). The engineered NP maintained the inhibitory activities of the syrbactin class but, due to rational modifications, inhibited iCP most strongly. Moreover, analysis of the crystal structure of yCP in complex with the derivative revealed further design strategies for even more specific iCP inhibition.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3212-3223"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promoting stimuli-responsive motion in soft matter by host-guest interactions 通过主客体相互作用促进软物质的刺激响应运动
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.06.016
{"title":"Promoting stimuli-responsive motion in soft matter by host-guest interactions","authors":"","doi":"10.1016/j.chempr.2024.06.016","DOIUrl":"10.1016/j.chempr.2024.06.016","url":null,"abstract":"<div><div><span><span>Soft actuators capable of performing complex mechanical motions are highly sought after for the development of next-generation smart materials. Nevertheless, none of the soft actuators reported to date have achieved multiple </span>actuation<span> modes using a single material. To overcome this limitation, we present a responsive composite film that displays distinct actuation modes when exposed to organic vapors. This material is readily prepared and scaled up by incorporating novel urea-cage compounds into a </span></span>polymer matrix<span>. Through a comprehensive investigation into the actuation mechanism, we demonstrate that the exceptional actuation behavior arises from the polymorphic transformations of the crystalline urea cages, which are triggered by selective host-guest interactions between the cages and solvent guests. It is worth emphasizing that, for the first time, the tool of host-guest chemistry has been harnessed to achieve complex mechanical motion in a soft actuator.</span></div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3184-3198"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-cluster-powered ultramicropore alliance in pore-space-partitioned metal-organic frameworks for benchmark one-step ethylene purification 孔隙空间分区金属有机框架中的金属簇驱动超微孔联盟,实现基准一步法乙烯纯化
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.09.011
Shu-Yi Li, Shu-Cong Fan, Peng Zhang, Wen-Yu Yuan, Ying Wang, Quan-Guo Zhai
{"title":"Metal-cluster-powered ultramicropore alliance in pore-space-partitioned metal-organic frameworks for benchmark one-step ethylene purification","authors":"Shu-Yi Li,&nbsp;Shu-Cong Fan,&nbsp;Peng Zhang,&nbsp;Wen-Yu Yuan,&nbsp;Ying Wang,&nbsp;Quan-Guo Zhai","doi":"10.1016/j.chempr.2024.09.011","DOIUrl":"10.1016/j.chempr.2024.09.011","url":null,"abstract":"","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 3254-3258"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-synthetic tuning of metal coordination on entangled scaffolds 缠结支架上金属配位的合成后调整
IF 19.1 1区 化学
Chem Pub Date : 2024-10-10 DOI: 10.1016/j.chempr.2024.08.023
Yuya Domoto
{"title":"Post-synthetic tuning of metal coordination on entangled scaffolds","authors":"Yuya Domoto","doi":"10.1016/j.chempr.2024.08.023","DOIUrl":"10.1016/j.chempr.2024.08.023","url":null,"abstract":"<div><div>Entangled structures have fascinated scientists for both their artistic beauty and functional properties. Zhang and co-workers have recently reported, in the <em>Journal of the American Chemical Society</em>, the synthesis of a cinquefoil knot in which metal coordination sites can be tuned using post-synthetic protocols, providing a way to edit the skeletons of topological molecules in order to endow them with otherwise inaccessible functions.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 10","pages":"Pages 2933-2934"},"PeriodicalIF":19.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信