C. Hsiao, Chun-Xiao Liu, S. Huynh, T. Minh, H. Yu, Hong-Quan Nguyen, J. Maa, S. Chang, E. Chang
{"title":"Effect of V/III ratios on surface morphology in a GaSb thin film grown on GaAs substrate by MOCVD","authors":"C. Hsiao, Chun-Xiao Liu, S. Huynh, T. Minh, H. Yu, Hong-Quan Nguyen, J. Maa, S. Chang, E. Chang","doi":"10.1109/SMELEC.2014.6920896","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920896","url":null,"abstract":"The epitaxial growth of GaSb thin film with different V/III ratios on high-lattice-mismatched GaAs (001) substrates by metal organic chemical vapor deposition (MOCVD) was investigated. Under optimal V/III ratio of 2.5, we found that there are many periodic 90° interfacial misfit dislocation (IMF) arrays existing at the GaAs/GaSb interface. The surface roughness is about 3.6nm, 2.2nm, 3.8nm, respectively while different V/III ratios (1.25, 2.5, 5) were adopted. These results demonstrated that the hill-and valley structure on the surface of GaSb/GaAs heterostructure can be effectively improved, and formed smooth surface morphology.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115371943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Abu Bakar, Ahmad Faiz Mohamad Zohaimi, N. Kamarozaman, N. Shaari, S. M. M. Kasim, S. H. Herman
{"title":"Annealing temperature dependence of resistive switching behavior for sol-gel spin coated zinc oxide thin films","authors":"R. Abu Bakar, Ahmad Faiz Mohamad Zohaimi, N. Kamarozaman, N. Shaari, S. M. M. Kasim, S. H. Herman","doi":"10.1109/SMELEC.2014.6920895","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920895","url":null,"abstract":"This work focuses on the resistive switching behavior of sol-gel spin coated zinc oxide (ZnO) thin films on ITO substrate. The deposited ZnO thin films were annealed at various temperatures from 300°C to 500°C in a furnace for 60 minutes in order to study the effect of annealing temperature on the resistive switching behavior of ZnO thin film. The electrical property of the thin film was characterized using 2-point probe current-voltage (I-V) measurement. The surface morphology and film thickness were examined and measured using atomic force microscopy (AFM) and surface profiler respectively. The I-V characteristic showed that the heat treatment on the ZnO thin films at 300 and 400°C resulted in the resistive switching characteristic behavior. Further increasing the temperature up to 500°C on the other hand leads to the formation of asymmetrical hysteresis loop.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124300835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementation of low power compressed ROM for direct digital frequency synthesizer","authors":"Salah Alkurwy, S. M. Md Ali, M. Islam","doi":"10.1109/SMELEC.2014.6920859","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920859","url":null,"abstract":"A Low Power Compressed ROM Look-up table has been presented in this paper to achieve low power consumption of the direct digital frequency synthesizer as well small core size. The quarter wave symmetry technique is used to store only one quarter of the sine wave. The suggested 12-bit compressed ROM designed consists of three 4-bit sub-ROMs based on an angular decomposition technique and trigonometric identity. Exploiting the advantages of sine-cosine symmetrical attributes together with XOR logic gates, one sub-ROM block can be removed from the design. These techniques, compressed the ROM into 368 bits. The ROM compressed ratio is 534.2:1, with only two adders, two multipliers, and XOR-gates with high frequency resolution of 0.029 Hz.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116132254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Maheran, P. Menon, S. Shaari, T. Kalaivani, Ibrahim Ahmad, Z. A. N. Faizah, P. R. Apte
{"title":"Effect of process parameter variability on the threshold voltage of downscaled 22nm PMOS using taguchi method","authors":"A. Maheran, P. Menon, S. Shaari, T. Kalaivani, Ibrahim Ahmad, Z. A. N. Faizah, P. R. Apte","doi":"10.1109/SMELEC.2014.6920825","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920825","url":null,"abstract":"This paper provides the enhancement of 22nm planar PMOS transistor technology through downscaling, design parameter simulation and optimization process. The scaled down device is optimized for its process parameter variability using Taguchi method. The aim is to find the best combination of fabrication parameters in order to achieve the target value of the threshold voltage (Vth). A combination of high permittivity material (high-k) and metal gate is utilized simultaneously in replacing the conventional SiO2/Poly-Si technology. For this, Titanium dioxide (TiO2) was used as the high-k material and tungsten silicide (WSix) was used as the metal gate. The simulation results show that the optimal threshold voltage (Vth) of -0.289 V ± 12.7% is achieved in accordance to the ITRS 2012 specifications. This provides a benchmark towards the fabrication of 22 nm planar PMOS in future work.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123644841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 20 GHz power amplifier design on novel nonlinear model","authors":"Zonghua Zheng, Lingling Sun, Jun Liu","doi":"10.1109/SMELEC.2014.6920784","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920784","url":null,"abstract":"This paper designs a 20 GHz power amplifier based on a novel model which is the quadratic polynomial expansion of nonlinear scattering function. The novel model is capable of accurately computing the voltage of device under any fundamental and harmonic frequency load impedance changing implemented with Frequency Domain Defined Device (FDD) component in the ADS. Through the new model, it is easy to find out the optimal fundamental and harmonic load impedance. The designed PA achieves a peak power-added efficiency (PAE) of 35.1% and the saturated output power of 21 dBm in PP1010MS EEHEMT operating at 20 GHz.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121056031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustic metamaterials and phononic crystals: Towards the total control of the wave propagation","authors":"A. Khelif","doi":"10.1109/SMELEC.2014.6920778","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920778","url":null,"abstract":"Classical waves, including elastic waves (acoustic waves) and electromagnetic waves (optical waves and microwaves), are described by conventional wave-propagation functions. Elastic waves were the first waveforms to be understood in condensed matter and have a wide range of applications from industry to defense, from healthcare to entertainment. In 1987, the photonic crystal was proposed to describe the propagation of optical waves in refraction index-modulated periodic structures analogous to the propagation of electrons in real crystals. This situation recalls the classical work by Brillouin. Brillouin considered elastic waves in periodic strings, electromagnetic waves in electrical circuits, and electrons in crystals as a system, resulting in some important common concepts, such as the Brillouin zone, band gap, etc., which are generally shared by the various forms of waves: electrons as scalar waves, optical waves as vector waves, and elastic waves as tensor waves. Following on from photonic crystals, the concept of phononic crystals was conceived with elastic waves propagating in periodic structures modulated with periodic elastic moduli and mass densities. These artificially structured materials possess a number of important properties, such as band gaps, band edge states7, and the ability to slow the velocity of sound (slow wave effect). Furthermore, by creating artificially designed structures on a deep subwavelength scale, artificial acoustic `atoms' can be purposely engineered into acoustic metamaterials to dramatically change the excitation and propagation of acoustic waves, and thus give rise to subdiffraction-limited resolution and its related myriad novel effects, such as negative, negative elastic modulus, and negative mass density. Finally, Acoustic metamaterials and phononicc crystal are a newly emerging field, which have inherently abnormal and interesting physical effects that are important to basic research, and offer potential for applications in everyday life that might revolutionize acoustic materials.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122563022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Horrendous capacity cost of semiconductor wafer manufacturing","authors":"K. Ibrahim, M. A. Chik, U. Hashim","doi":"10.1109/SMELEC.2014.6920864","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920864","url":null,"abstract":"Semiconductor wafer manufacturing, being one of the most advanced and complex process, commands high level of utilization of the available tools to ensure maximum productivity. It is also very important to keep the operations as lean as possible to ensure cost effectiveness. In this research we will show that the cost additional capacity is outrages. This is the main reason more and more companies are opting out of fab owners club. Others are scaling down and going fables and fab-light. Capacity utilization and capacity maximization is the key to a successful fab. Fabs continuously look for ways to increase the capacity by improving productivity. Beyond certain productivity level, fabs must spend on purchasing tools. Semiconductor tools are expensive and in many cases there will be a need to spend in the support infrastructure. The escalating cost really brings out the creativity and innovation among the fab engineers. This paper discusses what actions are taken to address or mitigate this issue. The research is based on some available data from SilTerra Malaysia S dn Bhd wafer fab in Kulim.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124839641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. S. Alias, S. Kamaruddin, N. Nafarizal, M. Z. Sahdan
{"title":"Performance of inverted organic solar cell using different metal electrodes","authors":"M. S. Alias, S. Kamaruddin, N. Nafarizal, M. Z. Sahdan","doi":"10.1109/SMELEC.2014.6920886","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920886","url":null,"abstract":"Organic solar cell is one of the fastest improving solar cells nowadays with improved power conversion efficiency approaching 10%. Here, we explore the performance of bulk heterojunction solar cell based on poly(3-hexyl thiophene) [P3HT] and [6,6]-phenyl-C61-butyric acid methyl ester [PCBM] by introducing ZnO nanoparticles buffer layer and appropriately tuning its energy level alignment by using different metal electrodes. The devices performance using two different high work function metal electrodes namely gold and platinum was investigated. The open circuit voltage (Voc) was obviously changed using different metal electrodes. The device with Platinum electrode shows higher Voc (0.2535 V) than the device with gold electrode by a factor of ~2. However, the efficiency was slightly lower than the gold device.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125203538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Fathil, M. K. Md Arshad, U. Hashim, A. R. Ruslinda, R. Ayub, A. H. Azman, M. Nurfaiz, M. Z. Kamarudin, M. Aminuddin, A. Munir
{"title":"The impact of minority carrier lifetime and carrier concentration on the efficiency of CIGS solar cell","authors":"M. Fathil, M. K. Md Arshad, U. Hashim, A. R. Ruslinda, R. Ayub, A. H. Azman, M. Nurfaiz, M. Z. Kamarudin, M. Aminuddin, A. Munir","doi":"10.1109/SMELEC.2014.6920786","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920786","url":null,"abstract":"This paper deals with minority carrier lifetime and carrier concentration of Cu(In, Ga)Se2 (CIGS)-based thin film solar cells with a ZnS(n)/CIGS(p) heterojunction structure. The structure is simulated in commercial numerical simulation and the impact of minority carrier lifetime in the CIGS absorber layer on the open circuit voltage, short circuit current density, fill factor and efficiency of the CIGS solar cell are investigated. The increase of minority carrier lifetime has also increased the CIGS solar cell performance. Similar effects are also observed at different carrier concentrations of CIGS layer. All these simulated results give a helpful indication for a practical fabrication process.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"77 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128283552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Zulkhairi Roslan, D. Berhanuddin, M. A. Mohamed, M. F. Mohd Razip Wee, F. Larki, B. Majlis
{"title":"Structural damage of Si-implanted in the In0.53Ga0.47As thin film","authors":"Muhammad Zulkhairi Roslan, D. Berhanuddin, M. A. Mohamed, M. F. Mohd Razip Wee, F. Larki, B. Majlis","doi":"10.1109/SMELEC.2014.6920842","DOIUrl":"https://doi.org/10.1109/SMELEC.2014.6920842","url":null,"abstract":"Damage profiling of implanted ions in semiconductor's layer is crucial in order to accurately estimate the ion distribution and concentration in the target substrates. It also gives the predicted number of vacancies and interstitials after the collision events. This is particularly important prior to the ion implantation so as to reduce the defect formation and damage to the target's lattice which subsequently degrade the performance of the device. In this paper, we studied the optimized energy and range of ions implanted silicon in In0.53Ga0.47As film by utilizing the Stopping Range of Ions in Matter (SRIM) simulation. The effects of implantation energy in different thickness are also discussed based on creation of phonons, vacancies and ionization.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124096705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}