2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688441
Cassandra A. Browning, S. Vinci, Jack Zhu, D. Hull, M. Noras
{"title":"An evaluation of electric-field sensors for projectile detection","authors":"Cassandra A. Browning, S. Vinci, Jack Zhu, D. Hull, M. Noras","doi":"10.1109/ICSENS.2013.6688441","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688441","url":null,"abstract":"The U.S. Army Research Laboratory (ARL) conducted an experiment at Aberdeen Proving Ground (APG), MD, to collect bullet signature data using three different types of electric-field sensors. The first type is a free-space electric potential sensor; we used Remote Voltage Sensors (RVSs) manufactured by Quasar Federal Systems (QFS). The second type of sensor measures the electric field; we used QFS potential gradiometers and a varactor-based E-field sensor prototype designed by the University of North Carolina - Charlotte (UNCC). The third type of sensor is a “D-dot” charge induction probe designed and built by ARL. We analyzed the performance of each sensor type with regard to bullet detection capability. Mathematical models and signatures were developed for each sensor type, and actual signatures were measured and compared to these models.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"12 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113942938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688167
Fengtian Han, Boqian Sun, Linlin Li, G. Ma
{"title":"A sensitive three-axis micromachined accelerometer based on an electrostatically suspended proof mass","authors":"Fengtian Han, Boqian Sun, Linlin Li, G. Ma","doi":"10.1109/ICSENS.2013.6688167","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688167","url":null,"abstract":"A three-axis micromachined accelerometer where a free proof mass is suspended electrostatically in six degrees of freedom is proposed and tested in order to evaluate this sensitive electrostatic accelerometer for potential microgravity space applications. The micromachined device is based on a novel glass/silicon/glass bonding structure, fabricated by bulk micromachining technique and operated with closed-loop forcefeedback technology. The motion of the proof mass with respect to each side is fully servo-controlled by capacitive position sensing and electrostatic force feedback. To facilitate ground test of this low-g accelerometer, the full input range in the vertical z axis is set at a relatively high value of 3.68g in order to counteract the gravity in one g condition, while the range in the lateral x axis is set as low as 2.90mg to achieve high sensitivity. Initial test of this MEMS accelerometer shows that a sensitivity of 688.8V/g is achieved by setting a low bias voltage of 1V.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126146915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688404
Zhenxiang Yi, X. Liao, Hao Wu
{"title":"2-D model of the indirectly-heated type microwave power sensor based on GaAs MMIC process","authors":"Zhenxiang Yi, X. Liao, Hao Wu","doi":"10.1109/ICSENS.2013.6688404","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688404","url":null,"abstract":"In this paper, a novel two-dimensional (2-D) model is established to describe the temperature distribution of the indirectly-heated type microwave power sensor. Fourier series is applied to obtain the solution of the heat transfer equation based on the boundary conditions. Finite-element method (FEM) analysis is performed to verify the 2-D model and the simulation shows that the 2-D model is more accurate than the existing 1-D model. The power sensor is fabricated by GaAs MMIC process and MEMS technology. Au is chosen for the transmission line and the measuring pad, TaN is fabricated to form the two loaded resistors. Power measurement is accomplished from 0- 100mW under 0.1GHz, 0.5GHz, 1GHz, 5GHz and 10GHz, and the sensitivities are 0.26mV/mW, 0.25mV/mW, 0.23mV/mW, 0.19mV/mW and 0.16mV/mW, respectively. The measured results demonstrate that the 2-D model agrees with the measurement well at low frequency. However, errors increase at high frequency because of electromagnetic coupling loss of the transmission line and the parasitic loss of the load resistors.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126242441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688347
B. P. Nabar, Z. Çelik-Butler, D. Butler
{"title":"Self-powered, tactile pressure sensing skin using crystalline ZnO nanorod arrays for robotic applications","authors":"B. P. Nabar, Z. Çelik-Butler, D. Butler","doi":"10.1109/ICSENS.2013.6688347","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688347","url":null,"abstract":"Large area arrays of ordered ZnO piezoelectric nanorods are developed on flexible substrates towards self-powered sensing skin for robots. The sensor array is designed to measure tactile pressure in the 10 kPa-200 kPa range with 1 mm spatial resolution. A voltage signal in the range of few mV is observed in response to applied pressure. This work represents the first demonstration of perfectly ordered, vertically aligned, crystalline ZnO nanorod arrays, fabricated in polyimides to ensure conformity to non-planar surfaces such as a robot's. The sensors are self-packaged using a flexible substrate and a superstrate. In addition to the novelty of the sensor structure itself, the work includes an innovative low-temperature hydrothermal ZnO growth process compatible with the temperature restrictions imposed by the polyimide substrate/superstrate. Control of nanorod density and placement is achieved using a thermal nanoimprint lithography based template, another novelty of the presented work.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126290220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688541
C. Hepp, F. Krogmann, G. Urban
{"title":"Gas concentration and flow speed measurements using a polymer-based membrane sensor","authors":"C. Hepp, F. Krogmann, G. Urban","doi":"10.1109/ICSENS.2013.6688541","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688541","url":null,"abstract":"This contribution presents a polymer-based membrane sensor that is capable of determining simultaneously flow speed and gas concentration of binary gas mixtures. The sensor therefore combines two excitation modes. It consists of an unsymmetrical 1D-resistor array made of platinum. The well defined temperature coefficient of resistance enables to switch between constant temperature and constant power excitation modes of the heating element. The response signal of the downstream temperature sensor allows the gas concentration measurement of a binary gas mixture using constant power excitation mode. A switch to constant temperature excitation allows flow speed measurements. A sinusoidal AC-excitation with a frequency of 1 Hz is chosen to carry out the proof-of-concept.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129990135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688570
Gunjan Pandey, Ratnesh Kumar, R. Weber
{"title":"Design and implementation of a self-calibrating, compact micro strip sensor for in-situ dielectric spectroscopy and data transmission","authors":"Gunjan Pandey, Ratnesh Kumar, R. Weber","doi":"10.1109/ICSENS.2013.6688570","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688570","url":null,"abstract":"A compact, on-board, self-calibrating, micro strip sensor is presented. The sensor can make accurate multi-frequency measurements of complex permittivity in real time and transmit this information wirelessly by using the same sensor as a micro strip patch antenna. Such multi-frequency measurements in a multi-phase mixture like soil are used to estimate the concentration of individual constituents like bulk-soil, water, and various nutrients in soil. The sensor architecture comprises of a programmable phase locked loop (PLL) which sweeps through the frequency band of 3-40 MHz. The signal generated by the PLL is allowed to reflect from the micro strip patch which is surrounded by the dielectric medium under test (such as soil or food). The amplitude and phase of incident and reflected signals are captured and impedance due to the surrounding dielectric mixture is calculated. This impedance value is used to estimate the dielectric constant by mapping the input impedance of the micro strip sensor to different surrounding dielectric constant values. The sensor has an inbuilt self-calibrating mechanism which makes it useful for remote, underground and hand held applications.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124581858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688126
K. Benkstein, P. Rogers, C. B. Montgomery, S. Semancik, C. Jin, B. Raman
{"title":"Microsensor analyses for trace targets over extended times in a simulated Martian environment","authors":"K. Benkstein, P. Rogers, C. B. Montgomery, S. Semancik, C. Jin, B. Raman","doi":"10.1109/ICSENS.2013.6688126","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688126","url":null,"abstract":"We have studied the performance of a chemical microsensor array in a simulated Martian environment, which involved a carbon dioxide-rich background with low oxygen content (0.15 %) at low pressure and temperature to mimic the conditions at the Martian surface. Gas-phase target analytes (methane, ethane, hydrogen and sulfur dioxide) in complex ternary mixtures at concentrations of 200 nmol/mol and below were presented to the microsensor array under these conditions. The array featured individual metal oxide sensing elements on microhotplate platforms. We will review our operational approach for this extraterrestrial environment and report on the capabilities of the microsensor for detecting the target analytes. In particular, we will emphasize the application of Partial Least Squares-Discriminant Analysis (PLS-DA) models for the detection of the analytes, and discuss how the microsensor array performed over extended periods of operation (up to 3 weeks between training and test exposures).","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130960348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688513
P. Motto, V. Cauda, S. Stassi, G. Canavese, D. Demarchi
{"title":"Functionalized single ZnO-metal junction as a pH sensor","authors":"P. Motto, V. Cauda, S. Stassi, G. Canavese, D. Demarchi","doi":"10.1109/ICSENS.2013.6688513","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688513","url":null,"abstract":"We have prepared a novel pH sensor consisting in single ZnO micro-wire (MW) aligned on gold-electrode array prepared by electromigrating eight parallel gold wires on silicon wafer with a custom electronic system, leading to nano-sized gap. We also anchored to the ZnO MW surface organic functional molecules rich of amine (-NH2) groups, thus ZnO-NH The MWs were then deposited from solution and oreinted through dielectrophoresis, resulting in eight single MWs aligned across the electromigrated gold electrodes. Therefore each single silicon chip is composed by eight separated pH sensors. We measured the I-V characteristic and secondly the ZnO MW Field Effect Transistor (MW-FET) to evaluate the sensitivity of both amine-functionalized and unfunctionalized ZnO-gold junctions upon a pH variation to both acidic and basic values of the solution environmentWe show the superiority in pH response of the ZnO-NH junctions, with an increase of one order of magnitude of the current during the pH reduction, with respect to the bare ZnO ones. In particular a strong sensitivity enhancement was measured by MW-FET with respect to conventional I-V characteristics.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129840267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688128
Charles J. Choi, S. Semancik
{"title":"Fabrication and characterization of a dual-mode SPR/SERS sensor based on plasmonic nanodome arrays","authors":"Charles J. Choi, S. Semancik","doi":"10.1109/ICSENS.2013.6688128","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688128","url":null,"abstract":"This work describes a label-free, optical sensor system fabricated on a flexible plastic film with dual detection modalities: surface-enhanced Raman scattering (SERS) for specific chemical identification and localized surface plasmon resonance (LSPR) for capture-affinity biosensing. The sensor surface is comprised of a close-packed array of 383 nm diameter dome structures with interdome spacing of 14 nm, fabricated by a nanoreplica molding process and unpatterned blanket deposition of SiO2 and Ag thin films. The nanoreplica molding process presented in this work allows for simple, high-throughput fabrication of uniform nanoscale structures (nanodome arrays) over large surface areas without the requirement for high resolution lithography, additional processes such as etching and liftoff, or defect-free deposition of spherical microparticle monolayer templates. Such fabrication characteristics are important for realizing high performance, low-cost measurement technology.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127297923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2013 IEEE SENSORSPub Date : 2013-12-19DOI: 10.1109/ICSENS.2013.6688480
K. Johnson
{"title":"BioArgo: A global scale chemical sensor network to observe carbon, oxygen, and nitrogen cycles in the ocean","authors":"K. Johnson","doi":"10.1109/ICSENS.2013.6688480","DOIUrl":"https://doi.org/10.1109/ICSENS.2013.6688480","url":null,"abstract":"This talk will focus on the development and operation of a global scale, chemical sensor network that is distributed throughout the world's ocean. The daily, seasonal and interannual changes in the concentrations of inorganic carbon, pH, dissolved oxygen and nitrate that are driven by photosynthesis and respiration are basic tracers of ocean metabolism. This metabolism has a fundamental control on the earth's climate, as production of organic matter in the surface ocean acts to lower atmospheric carbon dioxide by about 200 ppm. It is possible that these rates of elemental cycling will change in the future as the surface ocean warms [1]. However, there are no existing observing systems that allow ocean metabolism to be observed directly at a global scale. In particular, sampling chemistry from ships does not work because of the expense and remoteness of most of the ocean. At the global scale, ocean productivity can only be sensed indirectly from satellite ocean color observations. Global scale sensor networks using robotic platforms equipped with chemical sensors are required to directly observe ocean metabolism [2]. The Argo network (http://www.argo.ucsd.edu), which is used to monitor the heat content of the ocean, is a model for such a system. There are >3000 Argo profiling floats throughout the ocean. They rise from 2000 m depth at 5 to 10 day intervals measuring temperature and salinity during the ascent and then transmit the data to low earth orbit communications networks. This cycle is repeated for the 5 year life of each float. The BioArgo system is now working to build a complementary network equipped with pH, oxygen, nitrate and biooptical sensors [3]. More than 200 profiling floats with oxygen and >40 floats with nitrate are now operating from the Arctic to the Antarctic in all of the major ocean basins (http://argo.jcommops.org/maps.html, scroll right to the Bio map). These sensors have demonstrated exceptional stability and precision over time periods now reaching four years [4-7]. Experimental pH sensors are now operating on profiling floats with a precision and stability near 0.001 pH over an annual cycle. These results demonstrate the feasibility of establishing a global chemical sensor network. This talk will review the methods used to develop chemical sensors with multi-year stability and the development of a global observing system.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"13 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120918154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}