DiPel®中苏云金芽孢杆菌孢子的太赫兹检测

L. Viveros, Weidong Zhang, E. Brown
{"title":"DiPel®中苏云金芽孢杆菌孢子的太赫兹检测","authors":"L. Viveros, Weidong Zhang, E. Brown","doi":"10.1109/ICSENS.2013.6688413","DOIUrl":null,"url":null,"abstract":"Frequency domain terahertz (THz) spectroscopy was used to study DiPel® PRO DF, a commercial insecticide containing 54% Bacillus thuringiensis subsp. kurstaki. The mixture contains Bt spores as well as Bt protein toxins. Microscopic imaging revealed that DiPel® is composed of millimeter scale coarse particles and SEM photos indicate Bt spores are in these particles. The substantial attenuation from transmission measurements suggested strong signal scattering since the dimensions of particles (~1 mm-400 μm) are close to the THz wavelengths (~750-250 μm). Alternatively, periscope reflection measurements were carried out and a 917 GHz absorbance signature was observed. This is explained by the Mie theory that a portion of absorption is accompanied with scattering. Resonant absorption can be excited as long as internal vibration exists within particles. Therefore, absorption can be detected by the reflectivity measurements. To prove this hypothesis, Bt spores were separated from the large DiPel® coarse particles and their presence was again confirmed with microscopy. A transmission scan of the extracted spore samples was then repeated. The 917 GHz absorbance signature was present and consistent with transmissions on culture-grown, freshly harvested Bt spore samples.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz detection of Bacillus thuringiensis spores in DiPel®\",\"authors\":\"L. Viveros, Weidong Zhang, E. Brown\",\"doi\":\"10.1109/ICSENS.2013.6688413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency domain terahertz (THz) spectroscopy was used to study DiPel® PRO DF, a commercial insecticide containing 54% Bacillus thuringiensis subsp. kurstaki. The mixture contains Bt spores as well as Bt protein toxins. Microscopic imaging revealed that DiPel® is composed of millimeter scale coarse particles and SEM photos indicate Bt spores are in these particles. The substantial attenuation from transmission measurements suggested strong signal scattering since the dimensions of particles (~1 mm-400 μm) are close to the THz wavelengths (~750-250 μm). Alternatively, periscope reflection measurements were carried out and a 917 GHz absorbance signature was observed. This is explained by the Mie theory that a portion of absorption is accompanied with scattering. Resonant absorption can be excited as long as internal vibration exists within particles. Therefore, absorption can be detected by the reflectivity measurements. To prove this hypothesis, Bt spores were separated from the large DiPel® coarse particles and their presence was again confirmed with microscopy. A transmission scan of the extracted spore samples was then repeated. The 917 GHz absorbance signature was present and consistent with transmissions on culture-grown, freshly harvested Bt spore samples.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频率域太赫兹(THz)光谱研究了含有54%苏云金芽孢杆菌亚种的商用杀虫剂DiPel®PRO DF。kurstaki。这种混合物含有Bt孢子和Bt蛋白毒素。显微成像显示DiPel®是由毫米级的粗颗粒组成,扫描电镜照片显示这些颗粒中有Bt孢子。透射测量的大量衰减表明,由于粒子的尺寸(~1 mm-400 μm)接近太赫兹波长(~750-250 μm),因此信号散射很强。另外,潜望镜反射测量和917 GHz吸光度特征被观察到。这可以用米氏理论来解释,即一部分吸收伴随着散射。只要粒子内部存在振动,就能激发共振吸收。因此,吸收可以通过反射率测量来检测。为了证明这一假设,从大的DiPel®粗颗粒中分离出Bt孢子,并用显微镜再次证实了它们的存在。然后重复对提取的孢子样本进行透射扫描。917 GHz的吸光度特征与培养、新鲜收获的Bt孢子样品的传输一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terahertz detection of Bacillus thuringiensis spores in DiPel®
Frequency domain terahertz (THz) spectroscopy was used to study DiPel® PRO DF, a commercial insecticide containing 54% Bacillus thuringiensis subsp. kurstaki. The mixture contains Bt spores as well as Bt protein toxins. Microscopic imaging revealed that DiPel® is composed of millimeter scale coarse particles and SEM photos indicate Bt spores are in these particles. The substantial attenuation from transmission measurements suggested strong signal scattering since the dimensions of particles (~1 mm-400 μm) are close to the THz wavelengths (~750-250 μm). Alternatively, periscope reflection measurements were carried out and a 917 GHz absorbance signature was observed. This is explained by the Mie theory that a portion of absorption is accompanied with scattering. Resonant absorption can be excited as long as internal vibration exists within particles. Therefore, absorption can be detected by the reflectivity measurements. To prove this hypothesis, Bt spores were separated from the large DiPel® coarse particles and their presence was again confirmed with microscopy. A transmission scan of the extracted spore samples was then repeated. The 917 GHz absorbance signature was present and consistent with transmissions on culture-grown, freshly harvested Bt spore samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信