SiC gas sensor arrays for extreme environments

S. Roy, B. Furnival, N. Wood, K. Vassilevski, N. Wright, A. Horsfall, C. J. O'Malley
{"title":"SiC gas sensor arrays for extreme environments","authors":"S. Roy, B. Furnival, N. Wood, K. Vassilevski, N. Wright, A. Horsfall, C. J. O'Malley","doi":"10.1109/ICSENS.2013.6688186","DOIUrl":null,"url":null,"abstract":"For the first time SiC-based gas sensor arrays have been demonstrated, which are capable of discriminating gas species under harsh environments. The structures utilise either a TiO2 or HfO2 dielectric layer and a Pt or Pd catalytic contact. We show that the defects in the dielectric dominate the response to hydrogen and oxygen, resulting in array behaviour, without the need for large numbers of catalytic metals. Simple multiple linear regression techniques can be used with the array to provide a real time prediction of the gas contents of a mixture.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For the first time SiC-based gas sensor arrays have been demonstrated, which are capable of discriminating gas species under harsh environments. The structures utilise either a TiO2 or HfO2 dielectric layer and a Pt or Pd catalytic contact. We show that the defects in the dielectric dominate the response to hydrogen and oxygen, resulting in array behaviour, without the need for large numbers of catalytic metals. Simple multiple linear regression techniques can be used with the array to provide a real time prediction of the gas contents of a mixture.
用于极端环境的SiC气体传感器阵列
首次证明了基于sic的气体传感器阵列能够在恶劣环境下识别气体种类。该结构利用TiO2或HfO2介电层和Pt或Pd催化接触。我们表明,电介质中的缺陷主导了对氢和氧的响应,导致阵列行为,而不需要大量的催化金属。简单的多元线性回归技术可以与阵列一起使用,以提供混合物气体含量的实时预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信