{"title":"Prime-localized Weinstein subdomains","authors":"Oleg Lazarev, Zachary Sylvan","doi":"10.2140/gt.2023.27.699","DOIUrl":"https://doi.org/10.2140/gt.2023.27.699","url":null,"abstract":"For any high-dimensional Weinstein domain and finite collection of primes, we construct a Weinstein subdomain whose wrapped Fukaya category is a localization of the original wrapped Fukaya category away from the given primes. When the original domain is a cotangent bundle, these subdomains form a decreasing lattice whose order cannot be reversed. \u0000Furthermore, we classify the possible wrapped Fukaya categories of Weinstein subdomains of a cotangent bundle of a simply connected, spin manifold, showing that they all coincide with one of these prime localizations. In the process, we describe which twisted complexes in the wrapped Fukaya category of a cotangent bundle of a sphere are isomorphic to genuine Lagrangians.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128865695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combinatorial Ricci flows and the hyperbolization\u0000of a class of compact 3–manifolds","authors":"Ke Feng, Huabin Ge, B. Hua","doi":"10.2140/gt.2022.26.1349","DOIUrl":"https://doi.org/10.2140/gt.2022.26.1349","url":null,"abstract":"We prove that for a compact 3-manifold M with boundary admitting an ideal triangulation T with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that T is isotopic to a geometric decomposition of M. Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo [Luo05] for pseudo 3-manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131193924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}