A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves

L. Battistella, Francesca Carocci
{"title":"A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves","authors":"L. Battistella, Francesca Carocci","doi":"10.2140/gt.2023.27.1203","DOIUrl":null,"url":null,"abstract":"We construct a modular desingularisation of $\\overline{\\mathcal{M}}_{2,n}(\\mathbb{P}^r,d)^{\\text{main}}$. The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers: with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and non-reduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We construct a modular desingularisation of $\overline{\mathcal{M}}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$. The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers: with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and non-reduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.
投影空间中两条曲线空间的光滑紧化:通过对数几何和Gorenstein曲线
我们构造了$\overline{\mathcal{M}}_{2,n}(\mathbb{P}^r,d)^{\text{main}}$的模块化解具象化。二属的Gorenstein奇点的几何使我们考虑来自可预允许覆盖的映射:有了这种增强的对数结构,就有可能通过对数修正来消除主要成分。孤立奇点和非约化奇点都是自然出现的。我们的构造给出了格2中的约简Gromov-Witten不变量的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信