{"title":"Discrete subgroups of small critical exponent","authors":"Beibei Liu, Shi Wang","doi":"10.2140/gt.2023.27.2347","DOIUrl":null,"url":null,"abstract":"We prove that finitely generated higher dimensional Kleinian groups with small critical exponent are always convex-cocompact. Along the way, we also prove some geometric properties for any complete pinched negatively curved manifold with critical exponent less than 1.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.2347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We prove that finitely generated higher dimensional Kleinian groups with small critical exponent are always convex-cocompact. Along the way, we also prove some geometric properties for any complete pinched negatively curved manifold with critical exponent less than 1.