组合Ricci流和一类紧3流形的夸张化

Ke Feng, Huabin Ge, B. Hua
{"title":"组合Ricci流和一类紧3流形的夸张化","authors":"Ke Feng, Huabin Ge, B. Hua","doi":"10.2140/gt.2022.26.1349","DOIUrl":null,"url":null,"abstract":"We prove that for a compact 3-manifold M with boundary admitting an ideal triangulation T with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that T is isotopic to a geometric decomposition of M. Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo [Luo05] for pseudo 3-manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Combinatorial Ricci flows and the hyperbolization\\nof a class of compact 3–manifolds\",\"authors\":\"Ke Feng, Huabin Ge, B. Hua\",\"doi\":\"10.2140/gt.2022.26.1349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for a compact 3-manifold M with boundary admitting an ideal triangulation T with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that T is isotopic to a geometric decomposition of M. Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo [Luo05] for pseudo 3-manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了对于一个紧致3-流形M,其边界为理想三角形T,且所有边价至少为10,则存在一个具有完全测地边界的唯一完全双曲度量,使得T是M的几何分解的同位素。我们的方法是使用Luo [Luo05]对伪3-流形引入的组合Ricci流的一种变体。在这种情况下,我们证明了扩展Ricci流以指数速度收敛于双曲度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial Ricci flows and the hyperbolization of a class of compact 3–manifolds
We prove that for a compact 3-manifold M with boundary admitting an ideal triangulation T with valence at least 10 at all edges, there exists a unique complete hyperbolic metric with totally geodesic boundary, so that T is isotopic to a geometric decomposition of M. Our approach is to use a variant of the combinatorial Ricci flow introduced by Luo [Luo05] for pseudo 3-manifolds. In this case, we prove that the extended Ricci flow converges to the hyperbolic metric exponentially fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信