Legendrian编织:n图演算,旗模及其应用

Roger Casals, E. Zaslow
{"title":"Legendrian编织:n图演算,旗模及其应用","authors":"Roger Casals, E. Zaslow","doi":"10.2140/gt.2022.26.3589","DOIUrl":null,"url":null,"abstract":"We study a class of Legendrian surfaces in contact five-folds by encoding their wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian weaves, and to the combinatorial objects as N-graphs. First, we develop a diagrammatic calculus which encodes contact geometric operations on Legendrian surfaces as multi-colored planar combinatorics. Second, we present an algebraic-geometric characterization for the moduli space of microlocal constructible sheaves associated to these Legendrian surfaces. Then we use these N-graphs and the flag moduli description of these Legendrian invariants for several new applications to contact and symplectic topology. \nApplications include showing that any finite group can be realized as a subfactor of a 3-dimensional Lagrangian concordance monoid for a Legendrian surface in the 1-jet space of the two-sphere, a new construction of infinitely many exact Lagrangian fillings for Legendrian links in the standard contact three-sphere, and performing rational point counts over finite fields that distinguish Legendrian surfaces in the standard five-dimensional Darboux chart. In addition, the manuscript develops the notion of Legendrian mutation, studying microlocal monodromies and their transformations. The appendix illustrates the connection between our N-graph calculus for Lagrangian cobordisms and Elias-Khovanov-Williamson's Soergel Calculus.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"600 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Legendrian weaves : N–graph calculus, flag\\nmoduli and applications\",\"authors\":\"Roger Casals, E. Zaslow\",\"doi\":\"10.2140/gt.2022.26.3589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a class of Legendrian surfaces in contact five-folds by encoding their wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian weaves, and to the combinatorial objects as N-graphs. First, we develop a diagrammatic calculus which encodes contact geometric operations on Legendrian surfaces as multi-colored planar combinatorics. Second, we present an algebraic-geometric characterization for the moduli space of microlocal constructible sheaves associated to these Legendrian surfaces. Then we use these N-graphs and the flag moduli description of these Legendrian invariants for several new applications to contact and symplectic topology. \\nApplications include showing that any finite group can be realized as a subfactor of a 3-dimensional Lagrangian concordance monoid for a Legendrian surface in the 1-jet space of the two-sphere, a new construction of infinitely many exact Lagrangian fillings for Legendrian links in the standard contact three-sphere, and performing rational point counts over finite fields that distinguish Legendrian surfaces in the standard five-dimensional Darboux chart. In addition, the manuscript develops the notion of Legendrian mutation, studying microlocal monodromies and their transformations. The appendix illustrates the connection between our N-graph calculus for Lagrangian cobordisms and Elias-Khovanov-Williamson's Soergel Calculus.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"600 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

利用平面组合结构对一类接触五褶的Legendrian曲面的波前进行了编码。我们将这些曲面称为Legendrian weaves,将组合对象称为n图。首先,我们发展了一种图解演算,将Legendrian曲面上的接触几何运算编码为多色平面组合。其次,我们给出了与这些Legendrian曲面相关的微局部可构造轴的模空间的代数-几何表征。然后,我们将这些n图和这些Legendrian不变量的标志模描述应用于接触拓扑和辛拓扑的几个新应用。应用包括证明任何有限群都可以作为二维球面1-流空间中Legendrian曲面的三维拉格朗日调和单形的子因子来实现,标准接触三球面中Legendrian链接的无限多精确拉格朗日填充的新构造,以及在标准五维达布图中区分Legendrian曲面的有限域上执行有理点计数。此外,本文发展了Legendrian突变的概念,研究了微局部单体型及其变换。附录说明了拉格朗日协数的n图演算与Elias-Khovanov-Williamson的Soergel演算之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Legendrian weaves : N–graph calculus, flag moduli and applications
We study a class of Legendrian surfaces in contact five-folds by encoding their wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian weaves, and to the combinatorial objects as N-graphs. First, we develop a diagrammatic calculus which encodes contact geometric operations on Legendrian surfaces as multi-colored planar combinatorics. Second, we present an algebraic-geometric characterization for the moduli space of microlocal constructible sheaves associated to these Legendrian surfaces. Then we use these N-graphs and the flag moduli description of these Legendrian invariants for several new applications to contact and symplectic topology. Applications include showing that any finite group can be realized as a subfactor of a 3-dimensional Lagrangian concordance monoid for a Legendrian surface in the 1-jet space of the two-sphere, a new construction of infinitely many exact Lagrangian fillings for Legendrian links in the standard contact three-sphere, and performing rational point counts over finite fields that distinguish Legendrian surfaces in the standard five-dimensional Darboux chart. In addition, the manuscript develops the notion of Legendrian mutation, studying microlocal monodromies and their transformations. The appendix illustrates the connection between our N-graph calculus for Lagrangian cobordisms and Elias-Khovanov-Williamson's Soergel Calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信