定义流形的同义类

David Baraglia
{"title":"定义流形的同义类","authors":"David Baraglia","doi":"10.2140/gt.2023.27.641","DOIUrl":null,"url":null,"abstract":"We prove a diagonalisation theorem for the tautological, or generalised Miller-Morita-Mumford classes of compact, smooth, simply-connected definite $4$-manifolds. Our result can be thought of as a families version of Donaldson's diagonalisation theorem. We prove our result using a families version of the Bauer-Furuta cohomotopy refinement of Seiberg-Witten theory. We use our main result to deduce various results concerning the tautological classes of such $4$-manifolds. In particular, we completely determine the tautological rings of $\\mathbb{CP}^2$ and $\\mathbb{CP}^2 \\# \\mathbb{CP}^2$. We also derive a series of linear relations in the tautological ring which are universal in the sense that they hold for all compact, smooth, simply-connected definite $4$-manifolds.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tautological classes of definite\\n4–manifolds\",\"authors\":\"David Baraglia\",\"doi\":\"10.2140/gt.2023.27.641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a diagonalisation theorem for the tautological, or generalised Miller-Morita-Mumford classes of compact, smooth, simply-connected definite $4$-manifolds. Our result can be thought of as a families version of Donaldson's diagonalisation theorem. We prove our result using a families version of the Bauer-Furuta cohomotopy refinement of Seiberg-Witten theory. We use our main result to deduce various results concerning the tautological classes of such $4$-manifolds. In particular, we completely determine the tautological rings of $\\\\mathbb{CP}^2$ and $\\\\mathbb{CP}^2 \\\\# \\\\mathbb{CP}^2$. We also derive a series of linear relations in the tautological ring which are universal in the sense that they hold for all compact, smooth, simply-connected definite $4$-manifolds.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了紧的、光滑的、单连通的确定的$4$流形的同义的或广义的miller - morata - mumford类的对角化定理。我们的结果可以被认为是Donaldson对角化定理的一族版本。我们使用Seiberg-Witten理论的Bauer-Furuta同伦改进的一族版本证明了我们的结果。我们利用我们的主要结果推导出了关于这类$4$-流形的同义类的各种结果。特别地,我们完全确定了$\mathbb{CP}^2$和$\mathbb{CP}^2 \# \mathbb{CP}^2$的重言环。我们还在同义环中导出了一系列线性关系,这些线性关系是普遍的,因为它们适用于所有紧的、光滑的、单连通的确定的$4$-流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tautological classes of definite 4–manifolds
We prove a diagonalisation theorem for the tautological, or generalised Miller-Morita-Mumford classes of compact, smooth, simply-connected definite $4$-manifolds. Our result can be thought of as a families version of Donaldson's diagonalisation theorem. We prove our result using a families version of the Bauer-Furuta cohomotopy refinement of Seiberg-Witten theory. We use our main result to deduce various results concerning the tautological classes of such $4$-manifolds. In particular, we completely determine the tautological rings of $\mathbb{CP}^2$ and $\mathbb{CP}^2 \# \mathbb{CP}^2$. We also derive a series of linear relations in the tautological ring which are universal in the sense that they hold for all compact, smooth, simply-connected definite $4$-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信