Advances in Colloid and Interface Science最新文献

筛选
英文 中文
Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review 用于水处理的刺激响应纳米材料的最新进展和应用:综述
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-26 DOI: 10.1016/j.cis.2024.103304
Iman Salahshoori , Amirhosein Yazdanbakhsh , Majid Namayandeh Jorabchi , Fatemeh Zare Kazemabadi , Hossein Ali Khonakdar , Amir H. Mohammadi
{"title":"Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review","authors":"Iman Salahshoori ,&nbsp;Amirhosein Yazdanbakhsh ,&nbsp;Majid Namayandeh Jorabchi ,&nbsp;Fatemeh Zare Kazemabadi ,&nbsp;Hossein Ali Khonakdar ,&nbsp;Amir H. Mohammadi","doi":"10.1016/j.cis.2024.103304","DOIUrl":"10.1016/j.cis.2024.103304","url":null,"abstract":"<div><div>The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103304"},"PeriodicalIF":15.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights 离子液体型缓蚀剂在可持续保护战略方面的进展:从实验到计算的见解
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-17 DOI: 10.1016/j.cis.2024.103303
Pankaj Kumar , Krister Holmberg , Isha Soni , Nasarul Islam , Manish Kumar , Pooja Shandilya , Mika Sillanpää , Vinay Chauhan
{"title":"Advancements in ionic liquid-based corrosion inhibitors for sustainable protection strategies: from experimental to computational insights","authors":"Pankaj Kumar ,&nbsp;Krister Holmberg ,&nbsp;Isha Soni ,&nbsp;Nasarul Islam ,&nbsp;Manish Kumar ,&nbsp;Pooja Shandilya ,&nbsp;Mika Sillanpää ,&nbsp;Vinay Chauhan","doi":"10.1016/j.cis.2024.103303","DOIUrl":"10.1016/j.cis.2024.103303","url":null,"abstract":"<div><p>The global corrosion cost is estimated to be around 2.5 trillion USD, which is more than 3 % of the global GDP. Against this background, large efforts have been made to find effective corrosion inhibitors. Ionic liquids (ILs) are nowadays regarded as reliable functional materials and one of the most promising classes of anticorrosion agents. Not only are they efficient in preventing corrosion of iron and other metals, but they are also relatively inexpensive, need no solvents, and are non-toxic to humans This review addresses both experimental and theoretical investigations conducted to IL-based corrosion inhibitors (CIs). It covers various ILs used, synthesis methods, and their performance in diverse corrosive environments. Electrochemical techniques like EIS and potentiodynamic polarization, along with computational approaches including quantum chemical calculations and DFT, provide valuable insights into corrosion inhibition mechanisms and the interactions between anticorrosion agents-surfaces. The synergistic combination of experimental and theoretical approaches enhances our understanding of corrosion inhibition, enabling the design and optimization of effective and sustainable corrosion protection strategies. This review consolidates the existing knowledge on ionic liquid-based corrosion inhibitors, highlights the key findings from both experimental and theoretical investigations, and points out possible directions for further studies in this area.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103303"},"PeriodicalIF":15.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of ion scattering spectroscopy studies at liquid interfaces with noble gas ion projectiles 惰性气体离子射弹在液体界面上的离子散射光谱研究综述
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-10 DOI: 10.1016/j.cis.2024.103302
Anand Kumar , Gunther G. Andersson
{"title":"A review of ion scattering spectroscopy studies at liquid interfaces with noble gas ion projectiles","authors":"Anand Kumar ,&nbsp;Gunther G. Andersson","doi":"10.1016/j.cis.2024.103302","DOIUrl":"10.1016/j.cis.2024.103302","url":null,"abstract":"<div><div>Ion scattering spectroscopy (ISS) is an analytical tool that provides direct structural, topographical, and atomic compositional information at interfaces when ions are used as projectiles. Since its development in 1967, ISS is commonly used to obtain quantitative information about solid interfaces. Over the last couple of decades, ISS has emerged as an important technique to probe liquid interfaces and their studies employing ISS has become not uncommon, more so with Neutral impact collision ion scattering spectroscopy (NICISS). Therefore, here the principle of ISS with a particular focus on NICISS and its data evaluation are summarised while reviewing some important studies at vapor-liquid interfaces that provide direct information for molecular orientation of liquids (including ionic liquids), composition and distribution of atoms (or solutes) and charges as a function of depth to gain vast variety of thermodynamical information. Employing ISS such information can be achieved with high depth resolution of ∼1–2 Å (depending on the nature of the experiment). These examples highlight the significance of ISS and show potential for its application for studies related to specific ion effects, atmospheric reaction in aerosol and sea water droplets, and even determining the fate of environmental pollutants like heavy metal ions and per-fluoroalkyl substances (PFAS). Furthermore, some limitations of ISS are also discussed relating to investigation of high-vapor pressure liquids and probing buried interfaces like liquid-liquid interfaces while presenting progresses made in probing solid-liquid interfaces.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103302"},"PeriodicalIF":15.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting 苯硼酸功能化生物材料通过硅唾液酸靶向改善癌症免疫疗法
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-06 DOI: 10.1016/j.cis.2024.103301
Ashok Kumar Jangid, Kyobum Kim
{"title":"Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting","authors":"Ashok Kumar Jangid,&nbsp;Kyobum Kim","doi":"10.1016/j.cis.2024.103301","DOIUrl":"10.1016/j.cis.2024.103301","url":null,"abstract":"<div><p>Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103301"},"PeriodicalIF":15.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections 肽基抗菌剂的进展:应对新出现的耐药性感染的可能选择
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-06 DOI: 10.1016/j.cis.2024.103282
Nitin Yadav , Virander S. Chauhan
{"title":"Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections","authors":"Nitin Yadav ,&nbsp;Virander S. Chauhan","doi":"10.1016/j.cis.2024.103282","DOIUrl":"10.1016/j.cis.2024.103282","url":null,"abstract":"<div><p>In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103282"},"PeriodicalIF":15.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advancement in LaFeO3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review 以 LaFeO3 为介质的光催化和光电催化氢气进化反应系统的最新进展:全面综述
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-05 DOI: 10.1016/j.cis.2024.103300
Anshumika Mishra, Newmoon Priyadarshini, Sriram Mansingh, Kulamani Parida
{"title":"Recent advancement in LaFeO3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review","authors":"Anshumika Mishra,&nbsp;Newmoon Priyadarshini,&nbsp;Sriram Mansingh,&nbsp;Kulamani Parida","doi":"10.1016/j.cis.2024.103300","DOIUrl":"10.1016/j.cis.2024.103300","url":null,"abstract":"<div><p>The present disrupted scenario of the world calls for urgent attention to the need for renewable resources as an energy source for harnessing and feeding uninterrupted power supply to mankind. Amidst this, Photocatalysis (PC) and Photoelectrocatalysis (PEC) are some of the most budding methods of exploiting solar energy. LaFeO<sub>3</sub>-based systems are eligible for PC/PEC Hydrogen (H<sub>2</sub>) generation, incorporating the process of water splitting, etc. It would be fair to mention that the above methods can mimic the natural process of photosynthesis. This review comprises an encyclopedia of recent advancements in LaFeO<sub>3</sub> and modified systems towards sustainable Photocatalytic and Photoelectrocatalytic Hydrogen Evolution Reactions (HER). Besides the challenges, the review presents a clear and brief idea for the scientific research community on paving the future in upscaling and industrializing the LaFeO<sub>3</sub>-mediated green fuel (H2) generation to meet global energy needs.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103300"},"PeriodicalIF":15.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis 等离子体 IVB 族过渡金属氮化物:生物传感、光伏和光催化的制造方法和应用。
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-09-04 DOI: 10.1016/j.cis.2024.103298
Beyza Nur Günaydın , Ali Osman Çetinkaya , Milad Torabfam , Atacan Tütüncüoğlu , Cemre Irmak Kayalan , Mustafa Kemal Bayazıt , Meral Yüce , Hasan Kurt
{"title":"Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis","authors":"Beyza Nur Günaydın ,&nbsp;Ali Osman Çetinkaya ,&nbsp;Milad Torabfam ,&nbsp;Atacan Tütüncüoğlu ,&nbsp;Cemre Irmak Kayalan ,&nbsp;Mustafa Kemal Bayazıt ,&nbsp;Meral Yüce ,&nbsp;Hasan Kurt","doi":"10.1016/j.cis.2024.103298","DOIUrl":"10.1016/j.cis.2024.103298","url":null,"abstract":"<div><p>This review paper focuses on group IVB transition metal nitrides (TMNs) such as titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) and as alternative plasmonic materials to noble metals like gold and silver. It delves into the fabrication methods of these TMNs, particularly emphasizing thin film fabrication techniques like magnetron sputtering and atomic layer deposition, as well as nanostructure fabrication processes applied to these thin films. Overcoming the current fabrication and application-related challenges requires a deep understanding of the material properties, deposition techniques, and application requirements. Here, we discuss the impact of fabrication parameters on the properties of resulting films, highlighting the importance of aligning fabrication methods with practical application requirements for optimal performance. Additionally, we summarize and tabulate the most recent plasmonic applications of these TMNs in fields like biosensing, photovoltaic energy, and photocatalysis, contributing significantly to the current literature by consolidating knowledge on TMNs.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103298"},"PeriodicalIF":15.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624002215/pdfft?md5=33615797d656bf287935e2d96ae5fb08&pid=1-s2.0-S0001868624002215-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Newtonian behaviour of suspensions and emulsions: Review of different mechanisms 悬浮液和乳液的非牛顿行为:不同机理综述。
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-08-31 DOI: 10.1016/j.cis.2024.103299
Rajinder Pal
{"title":"Non-Newtonian behaviour of suspensions and emulsions: Review of different mechanisms","authors":"Rajinder Pal","doi":"10.1016/j.cis.2024.103299","DOIUrl":"10.1016/j.cis.2024.103299","url":null,"abstract":"<div><p>The mechanisms of non-Newtonian behaviour of suspensions and emulsions in steady shear flow are reviewed. The review is divided into two parts. In the first part, the mechanisms of non-Newtonian behaviour in suspensions and emulsions composed of Newtonian matrix are reviewed. Both dilute and concentrated systems are discussed. In the second part, the mechanisms of non-Newtonian behaviour in suspensions and emulsions composed of non-Newtonian matrix are reviewed<strong>.</strong> Where appropriate, mathematical models describing the rheology are included.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103299"},"PeriodicalIF":15.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624002227/pdfft?md5=1863368109a6e1c0ed661f5279137d27&pid=1-s2.0-S0001868624002227-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in microalgae encapsulation techniques for biomedical applications 用于生物医学应用的微藻封装技术的最新进展
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-08-30 DOI: 10.1016/j.cis.2024.103297
Ana Freire da Silva, André F. Moreira, Sónia P. Miguel, Paula Coutinho
{"title":"Recent advances in microalgae encapsulation techniques for biomedical applications","authors":"Ana Freire da Silva,&nbsp;André F. Moreira,&nbsp;Sónia P. Miguel,&nbsp;Paula Coutinho","doi":"10.1016/j.cis.2024.103297","DOIUrl":"10.1016/j.cis.2024.103297","url":null,"abstract":"<div><p>Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103297"},"PeriodicalIF":15.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624002203/pdfft?md5=60b0b6842081713710156014b328cde8&pid=1-s2.0-S0001868624002203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of nanoparticles for enhanced applicability of nanofluids in harsh reservoir conditions: A comprehensive review for improved oil recovery 纳米粒子表面改性,提高纳米流体在恶劣储层条件下的适用性:提高石油采收率的全面综述。
IF 15.9 1区 化学
Advances in Colloid and Interface Science Pub Date : 2024-08-30 DOI: 10.1016/j.cis.2024.103296
Reza Khoramian , Miras Issakhov , Peyman Pourafshary , Maratbek Gabdullin , Altynay Sharipova
{"title":"Surface modification of nanoparticles for enhanced applicability of nanofluids in harsh reservoir conditions: A comprehensive review for improved oil recovery","authors":"Reza Khoramian ,&nbsp;Miras Issakhov ,&nbsp;Peyman Pourafshary ,&nbsp;Maratbek Gabdullin ,&nbsp;Altynay Sharipova","doi":"10.1016/j.cis.2024.103296","DOIUrl":"10.1016/j.cis.2024.103296","url":null,"abstract":"<div><p>Nanoparticles improve traditional Enhanced Oil Recovery (EOR) methods but face instability issues. Surface modification resolves these, making it vital to understand its impact on EOR effectiveness. This paper examines how surface-modified nanoparticles can increase oil recovery rates. We discuss post-synthesis modifications like chemical functionalization, surfactant and polymer coatings, surface etching, and oxidation, and during-synthesis modifications like core-shell formation, in-situ ligand exchange, and surface passivation. Oil displacement studies show surface-engineered nanoparticles outperform conventional EOR methods. Coatings or functionalizations alter nanoparticle size by 1–5 nm, ensuring colloidal stability for 7 to 30 days at 25 to 65 °C and 30,000 to 150,000 ppm NaCl. This stability ensures uniform distribution and enhanced penetration through low-permeability (1–10 md) rocks, improving oil recovery by 5 to 50 %. Enhanced recovery is achieved through 1–25 μm oil-in-water emulsions, increased viscosity by ≥30 %, wettability changes from 170° to &lt;10°, and interfacial tension reductions of up to 95 %. Surface oxidation is suitable for carbon-based nanoparticles in high-permeability (≥500 md) reservoirs, leading to 80 % oil recovery in micromodel studies. Surface etching is efficient for all nanoparticle types, and combining it with chemical functionalization enhances resistance to harsh conditions (≥40,000 ppm salinity and ≥ 50 °C). Modifying nanoparticle surfaces with a silane coupling agent before using polymers and surfactants improves EOR parameters and reduces polymer thermal degradation (e.g., only 10 % viscosity decrease after 90 days). Economically, 500 ppm of nanoparticles requires 56.25 kg in a 112,500 m<sup>3</sup> reservoir, averaging $200/kg, and 2000 ppm of surface modifiers require 4 kg at $3.39/kg. This results in 188,694.30 barrels, or $16,039,015.50 at $85 per barrel for a 20 % increase in oil recovery. The economic benefits justify the initial costs, highlighting the importance of cost-effective nanoparticles for EOR applications.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103296"},"PeriodicalIF":15.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信