{"title":"金属有机框架(MOF)和共价有机框架(COF)的融合:在催化、传感和生物医学前沿跨越边界的协同飞跃","authors":"Pranjit Borah, Saptarshi Roy, Md. Ahmaruzzaman","doi":"10.1016/j.cis.2025.103613","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as transformative materials that consistently captivated scientists across various disciplines, renowned for their exceptional attributes such as large specific surface area, structural tunability, high crystallinity, and precisely-defined accessible porous architectures. Recent advancements in synthetic strategies have facilitated the engineering of MOF/COF hybrid constructs by integrating these frameworks, yielding a superior class of porous materials with synergistic characteristics. This review presents a comprehensive overview of state-of-the-art design for diverse MOF-COF heterostructures and hybrid variants alongside their innovative fabrication methodologies. It systematically classifies the diverse MOF/COF hybrid architectures, thereby unifying all established variants within a unified conceptual framework. Distinct from prior studies, this article combines the various fabrication approaches with a comparative assessment of their structural configurations, key attributes, synthetic feasibility, inherent advantages and limitations, and application prospects. Addressing a critical gap in the literature, it also comprehensively examines the characterization techniques employed, encompassing structural, morphological, thermal, and elemental analyses, to elucidate a detailed understanding of this exciting porous family. Considerable efforts have been dedicated to unravelling the interfacial chemistries that enable the synergistic integration of the complementary attributes of MOFs and COFs. Moreover, this study systematically highlights the pioneering advancements spanning catalysis—such as molecular catalysis, photocatalysis, and energy-transfer photocatalysis—as well as broader areas, including chemical sensing, gas adsorption and separation, biosensing, tribology, and biomedical technologies. Finally, the existing challenges and future directions for MOF/COF composites are sketched, emphasizing the need to enhance chemical stability, interfacial electronic coupling, and structural versatility through innovative linkages, advanced heterostructures, and tailored architectures. The integration of machine learning and data-driven approaches will expediate the rational design of hybrids tailored for catalysis, energy storage, sensing, and separation, while leveraging synergistic interactions and emerging synthetic paradigms will unlock multifunctional platforms for a broad spectrum of high-impact cross-disciplinary applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"344 ","pages":"Article 103613"},"PeriodicalIF":19.3000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fusion of metal-organic framework (MOF) and covalent organic framework (COF): A synergistic leap toward bridging boundaries in catalytic, sensing, and biomedical frontiers\",\"authors\":\"Pranjit Borah, Saptarshi Roy, Md. Ahmaruzzaman\",\"doi\":\"10.1016/j.cis.2025.103613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as transformative materials that consistently captivated scientists across various disciplines, renowned for their exceptional attributes such as large specific surface area, structural tunability, high crystallinity, and precisely-defined accessible porous architectures. Recent advancements in synthetic strategies have facilitated the engineering of MOF/COF hybrid constructs by integrating these frameworks, yielding a superior class of porous materials with synergistic characteristics. This review presents a comprehensive overview of state-of-the-art design for diverse MOF-COF heterostructures and hybrid variants alongside their innovative fabrication methodologies. It systematically classifies the diverse MOF/COF hybrid architectures, thereby unifying all established variants within a unified conceptual framework. Distinct from prior studies, this article combines the various fabrication approaches with a comparative assessment of their structural configurations, key attributes, synthetic feasibility, inherent advantages and limitations, and application prospects. Addressing a critical gap in the literature, it also comprehensively examines the characterization techniques employed, encompassing structural, morphological, thermal, and elemental analyses, to elucidate a detailed understanding of this exciting porous family. Considerable efforts have been dedicated to unravelling the interfacial chemistries that enable the synergistic integration of the complementary attributes of MOFs and COFs. Moreover, this study systematically highlights the pioneering advancements spanning catalysis—such as molecular catalysis, photocatalysis, and energy-transfer photocatalysis—as well as broader areas, including chemical sensing, gas adsorption and separation, biosensing, tribology, and biomedical technologies. Finally, the existing challenges and future directions for MOF/COF composites are sketched, emphasizing the need to enhance chemical stability, interfacial electronic coupling, and structural versatility through innovative linkages, advanced heterostructures, and tailored architectures. The integration of machine learning and data-driven approaches will expediate the rational design of hybrids tailored for catalysis, energy storage, sensing, and separation, while leveraging synergistic interactions and emerging synthetic paradigms will unlock multifunctional platforms for a broad spectrum of high-impact cross-disciplinary applications.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"344 \",\"pages\":\"Article 103613\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625002246\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The fusion of metal-organic framework (MOF) and covalent organic framework (COF): A synergistic leap toward bridging boundaries in catalytic, sensing, and biomedical frontiers
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have emerged as transformative materials that consistently captivated scientists across various disciplines, renowned for their exceptional attributes such as large specific surface area, structural tunability, high crystallinity, and precisely-defined accessible porous architectures. Recent advancements in synthetic strategies have facilitated the engineering of MOF/COF hybrid constructs by integrating these frameworks, yielding a superior class of porous materials with synergistic characteristics. This review presents a comprehensive overview of state-of-the-art design for diverse MOF-COF heterostructures and hybrid variants alongside their innovative fabrication methodologies. It systematically classifies the diverse MOF/COF hybrid architectures, thereby unifying all established variants within a unified conceptual framework. Distinct from prior studies, this article combines the various fabrication approaches with a comparative assessment of their structural configurations, key attributes, synthetic feasibility, inherent advantages and limitations, and application prospects. Addressing a critical gap in the literature, it also comprehensively examines the characterization techniques employed, encompassing structural, morphological, thermal, and elemental analyses, to elucidate a detailed understanding of this exciting porous family. Considerable efforts have been dedicated to unravelling the interfacial chemistries that enable the synergistic integration of the complementary attributes of MOFs and COFs. Moreover, this study systematically highlights the pioneering advancements spanning catalysis—such as molecular catalysis, photocatalysis, and energy-transfer photocatalysis—as well as broader areas, including chemical sensing, gas adsorption and separation, biosensing, tribology, and biomedical technologies. Finally, the existing challenges and future directions for MOF/COF composites are sketched, emphasizing the need to enhance chemical stability, interfacial electronic coupling, and structural versatility through innovative linkages, advanced heterostructures, and tailored architectures. The integration of machine learning and data-driven approaches will expediate the rational design of hybrids tailored for catalysis, energy storage, sensing, and separation, while leveraging synergistic interactions and emerging synthetic paradigms will unlock multifunctional platforms for a broad spectrum of high-impact cross-disciplinary applications.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.