Water Resources and Industry最新文献

筛选
英文 中文
Optimization of removal of sulfonamide antibiotics by magnetic nanocomposite from water samples using central composite design 中心复合设计优化磁性纳米复合材料对水样中磺胺类抗生素的去除效果
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-10-18 DOI: 10.1016/j.wri.2023.100229
Ahmed Hjazi , Yasir Qasim Almajidi , Wesam R. Kadhum , Mohammed Aly , Jitendra Malviya , Mohammed N. Fenjan , Ahmed Alawadi , Ali Alsaalamy , Awadhesh Chandramauli , Leila Baharinikoo
{"title":"Optimization of removal of sulfonamide antibiotics by magnetic nanocomposite from water samples using central composite design","authors":"Ahmed Hjazi ,&nbsp;Yasir Qasim Almajidi ,&nbsp;Wesam R. Kadhum ,&nbsp;Mohammed Aly ,&nbsp;Jitendra Malviya ,&nbsp;Mohammed N. Fenjan ,&nbsp;Ahmed Alawadi ,&nbsp;Ali Alsaalamy ,&nbsp;Awadhesh Chandramauli ,&nbsp;Leila Baharinikoo","doi":"10.1016/j.wri.2023.100229","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100229","url":null,"abstract":"<div><p>The present study aimed to remove sulfonamide antibiotics from water samples using magnetic Fe<sub>3</sub>O<sub>4</sub>-bentonite nanocomposite (Fe<sub>3</sub>O<sub>4</sub>-Bt) as an adsorbent. The adsorbent has a surface area of 74.27 m<sup>2</sup> g<sup>-1</sup>, a pore size of 87.53 nm, and a pore volume of 0.146 cm<sup>3</sup> g<sup>-1</sup>. A central composite design (CCD) matrix was employed to model and optimize the process. The optimal conditions for removing sulfonamide antibiotics were determined using Fe<sub>3</sub>O<sub>4</sub>-Bt adsorbent at an antibiotic concentration of 20 mg L<sup>-1</sup>, the amount of nanoparticles of 0.23 g, pH of 6, and ultrasonication time of 17 min. The reusability study of the Fe<sub>3</sub>O<sub>4</sub>-Bt adsorbent showed that the Fe<sub>3</sub>O<sub>4</sub>-Bt could be used five times in adsorption/desorption processes. Also, applying the Fe<sub>3</sub>O<sub>4</sub>-Bt adsorbent on real samples revealed that Fe<sub>3</sub>O<sub>4</sub>-Bt adsorbent could remove sulfonamide antibiotics in the range of 86.85–97.47% with RSD (n = 5) &lt; 4.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treatability of high-strength real sheep slaughterhouse wastewater using struvite precipitation coupled Fenton's oxidation: The MAPFOX process 鸟粪石沉淀耦合Fenton氧化法处理高强度真实羊屠宰场废水的可行性:MAPFOX工艺
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-10-15 DOI: 10.1016/j.wri.2023.100228
Kaan Yetilmezsoy, Fatih Ilhan, Emel Kıyan
{"title":"Treatability of high-strength real sheep slaughterhouse wastewater using struvite precipitation coupled Fenton's oxidation: The MAPFOX process","authors":"Kaan Yetilmezsoy,&nbsp;Fatih Ilhan,&nbsp;Emel Kıyan","doi":"10.1016/j.wri.2023.100228","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100228","url":null,"abstract":"<div><p>Struvite (MAP, magnesium ammonium phosphate hexahydrate, MgNH<sub>4</sub>PO<sub>4</sub>.6H<sub>2</sub>O) precipitation-aided Fenton's OXidation (MAPFOX process) was explored in the treatment of high-strength real sheep slaughterhouse wastewater (RSSW) for the first time under a comprehensive soft-computing-based modeling study. The experimental results showed that under the highest-efficiency conditions (chemical combination of MgCl<sub>2</sub>.6H<sub>2</sub>O + NaH<sub>2</sub>PO<sub>4</sub>.2H<sub>2</sub>O, a molar ratio of Mg<sup>2+</sup>:NH<sub>4</sub><sup>+</sup>-N:PO<sub>4</sub><sup>3–</sup>P = 1.2:1:1, a reaction pH of 9.0 ± 0.10, [NH<sub>4</sub><sup>+</sup>-N]<sub>0</sub> = 240 ± 20 mg/L, and a reaction time of 15 min), MAP precipitation could effectively remove more than 80 %, 60 %, 55 %, and 70 % of color, total chemical oxygen demand (TCOD), soluble COD (SCOD), and ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N) from the raw RSSW. The results of the Fenton's oxidation used as the post-treatment unit of the proposed MAPFOX system indicated that the integrated advanced oxidation process (AOP) was able to reduce the residual pollutant levels in the MAP-pretreated RSSW to the relevant discharge standards. Under the subsequent condition of [Fe<sup>2+</sup>]<sub>0</sub> = 90 mmol/L, [H<sub>2</sub>O<sub>2</sub>]<sub>0</sub> = 180 mmol/L, reaction pH = 3.25, and total reaction time = 60 min, more than 97 % of color, TCOD, SCOD, and NH<sub>4</sub><sup>+</sup>-N could be removed from the RSSW via the Fenton's oxidation after the MAP-based physicochemical treatment. According to SEM micrographs, surface morphology of dehydrated struvite exhibited irregular-shaped and overlapping sharp-edged particles of various sizes with an average size of about 50.9 μm. The Fourier Transform Infrared (FTIR) spectroscopy confirmed the active functional groups and type of bonds for the high-strength RSSW-oriented struvite (heated) within the spectral range of 4000–450 cm<sup>−1</sup>. Thermogravimetric Analysis (TGA), Derivative Thermogravimetry (DTG), Differential Thermal Analysis (DTA), and Differential Scanning Calorimetry (DSC) of the dehydrated struvite revealed that the weight loss occurred in three temperature zones, the maximum weight loss rate of 0.252 mg/min was recorded at around 224 °C and at time of 20.83 min, and the sample had strong endothermic and medium exothermic peaks at about 241 °C and 679 °C, respectively. The predictive successes of the implemented soft-computing approaches were benchmarked in terms of various statistical goodness-of-fit parameters. The performance assessment indices corroborated the superiority of the support vector machines-Pearson VII universal kernel function (SVM-PUKF)-based model (correlation coefficient (CC) = 0.9999–1.0000), mean absolute error (MAE) = 0.0222–0.0389 %, mean absolute percentage error (MAPE) = 0.0270–0.0506 %, root mean squared error (RMSE) = 0.0258–0.0415 %, coefficient of variation of RMSE ","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in water falling film reactor designs for the removal of organic pollutants by advanced oxidation processes: A review 深度氧化法去除有机污染物的降膜反应器研究进展
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-09-26 DOI: 10.1016/j.wri.2023.100227
Kosar Hikmat Hama Aziz , Fryad S. Mustafa , Khalid M. Omer , Iqrash Shafiq
{"title":"Recent advances in water falling film reactor designs for the removal of organic pollutants by advanced oxidation processes: A review","authors":"Kosar Hikmat Hama Aziz ,&nbsp;Fryad S. Mustafa ,&nbsp;Khalid M. Omer ,&nbsp;Iqrash Shafiq","doi":"10.1016/j.wri.2023.100227","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100227","url":null,"abstract":"<div><p>Chemical wastewater from industrial and urban activities is a major environmental concern. Advanced oxidation processes (AOPs) have emerged as efficient techniques for the removal of persistent organic pollutants from wastewater. AOPs generate highly reactive hydroxyl radicals (•OH) that effectively degrade and mineralize a wide range of organic contaminants in aqueous solutions. Research is ongoing to find simple and efficient reactor designs for AOPs. Water falling film (WFF) reactor designs have been effectively utilized for the removal of various organic pollutants from wastewater. This review provides an overview of the development and application of WFF reactor designs for organic pollutants degradation by various AOPs. This work summarizes recent studies on treating organic pollutants, highlights current challenges in applying WFF reactors for water treatment using AOPs, and proposes future research directions. The review aims to guide researchers and stimulate further investigations into practical applications of WFF reactors in wastewater treatment.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bimetallic Bi/Cu0-catalyzed persulfate-based advanced oxidation processes towards clofibric acid degradation in wastewater 双金属Bi/ cu0催化过硫酸盐深度氧化法降解废水中的纤维酸
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-09-15 DOI: 10.1016/j.wri.2023.100226
Jibran Iqbal , Noor S. Shah , Javed Ali Khan , Mohamed A. Habila , Grzegorz Boczkaj , Asam Shad , Yousef Nazzal , Ahmed A. Al-Taani , Fares Howari
{"title":"Bimetallic Bi/Cu0-catalyzed persulfate-based advanced oxidation processes towards clofibric acid degradation in wastewater","authors":"Jibran Iqbal ,&nbsp;Noor S. Shah ,&nbsp;Javed Ali Khan ,&nbsp;Mohamed A. Habila ,&nbsp;Grzegorz Boczkaj ,&nbsp;Asam Shad ,&nbsp;Yousef Nazzal ,&nbsp;Ahmed A. Al-Taani ,&nbsp;Fares Howari","doi":"10.1016/j.wri.2023.100226","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100226","url":null,"abstract":"<div><p>Clofibric acid (CFA), an important blood-lipid regulatory drug is an emerging organic pollutant and widely reported in water resources. A novel bimetallic, bismuth/zero valent cupper (Bi/Cu<sup>0</sup>) catalyst was prepared which showed better physiological, structural, and catalytic properties than Cu<sup>0</sup>. The Bi/Cu<sup>0</sup> effectively catalyzed persulfate (S<sub>2</sub>O<sub>8</sub><sup>2−</sup>) and caused 85% degradation of CFA. The Bi coupling improved reusability and stability of Cu<sup>0</sup>. The use of alcoholic and anionic radical scavengers and analyzing change in [S<sub>2</sub>O<sub>8</sub><sup>2−</sup>]<sub>0</sub> proved that Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> yield hydroxyl radicals (<sup>●</sup>OH) and sulfate radicals (SO<sub>4</sub><sup>●–</sup>). The <sup>●</sup>OH and SO<sub>4</sub><sup>●–</sup> showed faster reaction with CFA, i.e., 4.65 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>9</sup> and 3.82 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>9</sup> M<sup>−1</sup> s<sup>−1</sup> and degraded CFA into four degradation products. Under optimal conditions of [Bi/Cu<sup>0</sup>]<sub>0</sub> = 1.0 g/L and [S<sub>2</sub>O<sub>8</sub><sup>2−</sup>]<sub>0</sub> = 40 mg/L, 99.5% degradation of the 10 mg/L of CFA was achieved at 65 min. Temperature showed promising effects on the removal of CFA by Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> and caused 98% removal at 323 K than 75% at 298 K at 32 min. The temperature effects were used to calculate activation energy, enthalpy, and rate constant of CFA degradation. The Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> showed effective removal of CFA in real water samples also. The ecotoxicity study confirmed non-toxic product formation which suggests high capability of the proposed technology in the treatment of CFA.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Environment friendly treatment of petroleum hydrocarbon contaminated formation water: Mechanisms and consequences for degradation and adsorption 石油烃污染地层水的环境友好处理:降解和吸附的机理和后果
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-09-01 DOI: 10.1016/j.wri.2023.100224
Manisha Goswami , Rupshikha Patowary , Kaustuvmani Patowary , Hari Prasad Sarma , Suprakash Rabha , Bhaswati Devi , Nimisha Sarma , Emee Das , Arundhuti Devi
{"title":"Environment friendly treatment of petroleum hydrocarbon contaminated formation water: Mechanisms and consequences for degradation and adsorption","authors":"Manisha Goswami ,&nbsp;Rupshikha Patowary ,&nbsp;Kaustuvmani Patowary ,&nbsp;Hari Prasad Sarma ,&nbsp;Suprakash Rabha ,&nbsp;Bhaswati Devi ,&nbsp;Nimisha Sarma ,&nbsp;Emee Das ,&nbsp;Arundhuti Devi","doi":"10.1016/j.wri.2023.100224","DOIUrl":"10.1016/j.wri.2023.100224","url":null,"abstract":"<div><p>An innovative approach to remediate oilfield produced water, a major environmental pollutant from the oil and gas industry has been demonstrated in this study. The technique combines: invasive wetland plant (<em>Pistia stratiotes</em>) used in absorbing and metabolizing hydrocarbons present in the oilfield formation water, biosurfactant from indigenous Bacteria making them more accessible for degradation and fertilizer NPK act as biostimulator. The main objectives of this technique are to remediate Total Petroleum Hydrocarbons (TPH) in an environmentally friendly manner to be a potential for the petroleum sector. The success of the technique is supported by the results of GC-MS analysis, which detected no hydrocarbon compounds in treated water. However, after treatment using the proposed combination 90.1% of the TPH was degraded, and the remaining 9.9% was adsorbed by the biomaterials. Thus, this study would present a potential breakthrough in the ongoing battle against pollution caused by the oil and gas industry.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42148688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues 管理海水淡化,管理盐水:监管和社会技术问题的审查和系统化
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-08-30 DOI: 10.1016/j.wri.2023.100225
Mohammad Al-Saidi , Imen Saadaoui , Radhouane Ben-Hamadou
{"title":"Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues","authors":"Mohammad Al-Saidi ,&nbsp;Imen Saadaoui ,&nbsp;Radhouane Ben-Hamadou","doi":"10.1016/j.wri.2023.100225","DOIUrl":"10.1016/j.wri.2023.100225","url":null,"abstract":"<div><p>Desalination has become an attractive option for addressing water needs or solving problems of increasing water scarcity and short-term supply interruptions. However, several negative environmental impacts are associated with the resulting brine, for which a range of treatment, recovery, and disposal technologies have been suggested in the academic literature. Despite this, the technological emphasis fails to explain the absence of sustainable practices in many countries or the roles and responsibilities of involved actors. There is also a lack of consistent conceptualizations that include regulatory and governance-related issues. In this review paper, we examined the brine management issue in desalination activities as a socio-technical issue that needs to be embedded more strongly within governance and regulatory frameworks. Case experiences and options related to command and control, economic regulation, market-based approaches and public support are discussed and linked with brine management practices. This review paper shows that baseline regulations such as standards, assessments, and thresholds are still emerging, but they need to be complemented by approaches focusing on desalination costs and environmental performance. Overall, cross-sectoral collaboration in designing local brine regulation options is important for solving the brine issue. There is a need to create a joint action arena between the desalination industry, the public sector, and actors involved in innovations related to brine management. Besides, public leadership, through providing incentives and investments, is highly valuable for sustainable brine management. This leadership should address the cost of brine treatment or the required infrastructural development.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45858852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of reuse potential of highway runoff water in textile wet processing 纺织湿法加工中公路径流水回用潜力评价
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-08-17 DOI: 10.1016/j.wri.2023.100222
Muhammad Arslan , Maria Yaqub , Irfan Ahmed Shaikh
{"title":"Assessment of reuse potential of highway runoff water in textile wet processing","authors":"Muhammad Arslan ,&nbsp;Maria Yaqub ,&nbsp;Irfan Ahmed Shaikh","doi":"10.1016/j.wri.2023.100222","DOIUrl":"10.1016/j.wri.2023.100222","url":null,"abstract":"<div><p>The current study assesses the reuse potential of highway runoff water instead of fresh water in textile wet processing. Specific standard and batch fabric samples of selected reactive dyes were prepared in the laboratory using highway runoff water in the dyeing and washing stages of wet processing, and the quality of these fabric samples was assessed in terms of color difference properties, color strength properties, and color fastness properties. Batch 1 and batch 2 fabric samples, where highway runoff water was used in dyeing and washing, respectively, show excellent quality, whereas batch 3 fabric samples, where highway runoff water was used simultaneously in dyeing and washing stages, showed unreliable results. The total color difference value (DE*<sub>CMC</sub>) was found to be 0.14 to 0.75, 0.77 to 0.96, and 0.88 to 3.34 for batch 1, batch 2, and batch 3 fabric samples. Regarding color fastness to washing and crocking, dyeing quality ranges from very good to outstanding for batch 1, good to outstanding for batch 2, and moderate to excellent for batch 3 fabric samples.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45203783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regeneration possibilities and application of magnetically modified biochar for heavy metals elimination in real conditions 磁性改性生物炭在实际环境中去除重金属的再生可能性和应用
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-07-22 DOI: 10.1016/j.wri.2023.100219
Michaela Tokarčíková , Pavlína Peikertová , Karla Čech Barabaszová , Ondřej Životský , Roman Gabor , Jana Seidlerová
{"title":"Regeneration possibilities and application of magnetically modified biochar for heavy metals elimination in real conditions","authors":"Michaela Tokarčíková ,&nbsp;Pavlína Peikertová ,&nbsp;Karla Čech Barabaszová ,&nbsp;Ondřej Životský ,&nbsp;Roman Gabor ,&nbsp;Jana Seidlerová","doi":"10.1016/j.wri.2023.100219","DOIUrl":"10.1016/j.wri.2023.100219","url":null,"abstract":"<div><p>Although new types of composites with magnetic properties and high adsorption capacity for potentially toxic elements elimination are studied by researcherers, the information about the reusability, stability and removal efficiency of composites is still scarce or absent. Therefore, the aim of our work was applicate the sorbent to eliminate Zn(II), Cd(II) and Pb(II) ions from industrial waste leachates, and moreover, study the composite reusability and magnetic separation efficiency. Magnetically modified biochar was prepared from the fermentation residue of maise hybrid by a simple two-step method with microwave assistance. Composite properties, as well as the adsorption efficiency and magnetic response are depend on the extraction agent. The alkaline extraction agent showed the best properties for reusability and had no influence on Fe releasing from the composite, the adsorption efficiency was higher than 90% even in the 5<sup>th</sup> recycling cycle, and the composite remained magnetically active. The separation efficiency of composite from an aqueous environment by a magnet was higher than 95% within 15 min. Magnetically modified biochar proved to be an effective sorbent for metal ions elimination from wastewater.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47475814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on cavitation and photocatalysis - A critical review 高级氧化法降解罗丹明染料——以空化和光催化为重点——综述
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-07-21 DOI: 10.1016/j.wri.2023.100220
Ashish V. Mohod , Malwina Momotko , Noor Samad Shah , Mateusz Marchel , Mohammad Imran , Lingshuai Kong , Grzegorz Boczkaj
{"title":"Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on cavitation and photocatalysis - A critical review","authors":"Ashish V. Mohod ,&nbsp;Malwina Momotko ,&nbsp;Noor Samad Shah ,&nbsp;Mateusz Marchel ,&nbsp;Mohammad Imran ,&nbsp;Lingshuai Kong ,&nbsp;Grzegorz Boczkaj","doi":"10.1016/j.wri.2023.100220","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100220","url":null,"abstract":"<div><p>This review evaluates selected advanced oxidation processes (AOPs) - cavitation and photocatalysis - successfully used for wastewater treatment towards degradation of Rhodamine (Rh) dyes. Reactor configuration and impact of process parameters and oxidants addition (hydrogen peroxide, ozone, persulfates) on degradation effectiveness along with degradation mechanisms are discussed. Best technologies provide 100% degradation within 10–30 min. Rhodamine B is effectively degraded in highly acidic conditions (pH 2), while Rhodamine 6G requires basic conditions (pH 10). The most effective oxidants were hydrogen peroxide and ozone. Ecological Structure Activity Relationships (ECOSAR) revealed acute toxicities of the intermediates and by-products of the Rh dye.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49731919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on caviatation and photocatalysis - A critical review 高级氧化法降解罗丹明染料-以空化和光催化为重点-综述
IF 5.1 3区 工程技术
Water Resources and Industry Pub Date : 2023-07-01 DOI: 10.1016/j.wri.2023.100220
Ashish V Mohod, Malwina Momotko, N. S. Shah, M. Marchel, Mohammad Imran, Lingshuai Kong, G. Boczkaj
{"title":"Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on caviatation and photocatalysis - A critical review","authors":"Ashish V Mohod, Malwina Momotko, N. S. Shah, M. Marchel, Mohammad Imran, Lingshuai Kong, G. Boczkaj","doi":"10.1016/j.wri.2023.100220","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100220","url":null,"abstract":"","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49246146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信