使用电加热器辅助的 MED-TVC 海水淡化设备的建模和优化

IF 4.5 3区 工程技术 Q1 WATER RESOURCES
Reza Shahouni , Mohsen Abbasi , Mohammad Kord , Mohammad Akrami
{"title":"使用电加热器辅助的 MED-TVC 海水淡化设备的建模和优化","authors":"Reza Shahouni ,&nbsp;Mohsen Abbasi ,&nbsp;Mohammad Kord ,&nbsp;Mohammad Akrami","doi":"10.1016/j.wri.2024.100262","DOIUrl":null,"url":null,"abstract":"<div><p>One major issue with MED-TVC systems, a widely used thermal-based desalination technology, is their high energy consumption and carbon emissions. This underscores the importance of optimising and integrating these thermal-based desalination technologies with sustainable energy systems to utilize their waste heat and enhance the performance of these plants effectively. This research aimed to optimize and address the environmental challenges of MED-TVC desalination plants in areas with insufficient sunlight, unstable weather conditions, and limited economic resources. To this end, a model of an electric heater for generating thermal energy coupled with an optimized MED-TVC desalination plant was proposed. The MED-TVC section was optimized by incorporating an additional ejector in the final stage of MED-TVC demonstrating an increase of over 11 % in evacuating non-condensable gases from the last effect and increasing the product water by up to 14.89 %. Regarding the design of the electric heating elements used in electric heaters, the use of one-plus-two U-tubes with helical baffles was more efficient than multi-layer U-tubes with segmental baffles as improved the pressure loss of the thermal fluid by 25 % and increased the heat transfer coefficient of the heating elements to 18 %. The power section was also equipped with an off-grid system to provide the necessary power for the equipment of the proposed model. In the economic analysis of employing a parabolic trough solar collector and electric heaters, not only were the direct costs of the electric heaters almost equal to just 40 % of the direct costs of the parabolic trough solar collector approach but also the required thermal fluid was 50 % of the solar case.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"32 ","pages":"Article 100262"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371724000246/pdfft?md5=e9c0ed75367a19c9f5a16ec1b38af55c&pid=1-s2.0-S2212371724000246-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling and optimising of MED-TVC seawater desalination plants assisted with electric heaters\",\"authors\":\"Reza Shahouni ,&nbsp;Mohsen Abbasi ,&nbsp;Mohammad Kord ,&nbsp;Mohammad Akrami\",\"doi\":\"10.1016/j.wri.2024.100262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One major issue with MED-TVC systems, a widely used thermal-based desalination technology, is their high energy consumption and carbon emissions. This underscores the importance of optimising and integrating these thermal-based desalination technologies with sustainable energy systems to utilize their waste heat and enhance the performance of these plants effectively. This research aimed to optimize and address the environmental challenges of MED-TVC desalination plants in areas with insufficient sunlight, unstable weather conditions, and limited economic resources. To this end, a model of an electric heater for generating thermal energy coupled with an optimized MED-TVC desalination plant was proposed. The MED-TVC section was optimized by incorporating an additional ejector in the final stage of MED-TVC demonstrating an increase of over 11 % in evacuating non-condensable gases from the last effect and increasing the product water by up to 14.89 %. Regarding the design of the electric heating elements used in electric heaters, the use of one-plus-two U-tubes with helical baffles was more efficient than multi-layer U-tubes with segmental baffles as improved the pressure loss of the thermal fluid by 25 % and increased the heat transfer coefficient of the heating elements to 18 %. The power section was also equipped with an off-grid system to provide the necessary power for the equipment of the proposed model. In the economic analysis of employing a parabolic trough solar collector and electric heaters, not only were the direct costs of the electric heaters almost equal to just 40 % of the direct costs of the parabolic trough solar collector approach but also the required thermal fluid was 50 % of the solar case.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"32 \",\"pages\":\"Article 100262\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371724000246/pdfft?md5=e9c0ed75367a19c9f5a16ec1b38af55c&pid=1-s2.0-S2212371724000246-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371724000246\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

MED-TVC 系统是一种广泛使用的热法海水淡化技术,其主要问题是能耗高、碳排放量大。这凸显了优化这些热法海水淡化技术并将其与可持续能源系统集成,以利用其余热并有效提高这些工厂性能的重要性。本研究旨在优化和解决日照不足、气候条件不稳定和经济资源有限地区的 MED-TVC 海水淡化厂所面临的环境挑战。为此,我们提出了一个用于产生热能的电加热器模型,该模型与经过优化的 MED-TVC 海水淡化厂相结合。通过在 MED-TVC 的最后阶段增加一个喷射器,对 MED-TVC 部分进行了优化,结果表明,从最后阶段排出的不凝性气体增加了 11%,产品水增加了 14.89%。关于电加热器中使用的电加热元件的设计,使用带有螺旋挡板的一加二 U 形管比带有分段挡板的多层 U 形管更有效,因为热流体的压力损失降低了 25%,加热元件的传热系数提高了 18%。动力部分还配备了离网系统,为拟议模型的设备提供必要的电力。在采用抛物槽太阳能集热器和电加热器的经济分析中,不仅电加热器的直接成本几乎只相当于抛物槽太阳能集热器直接成本的 40%,而且所需的导热液体也是太阳能情况下的 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and optimising of MED-TVC seawater desalination plants assisted with electric heaters

One major issue with MED-TVC systems, a widely used thermal-based desalination technology, is their high energy consumption and carbon emissions. This underscores the importance of optimising and integrating these thermal-based desalination technologies with sustainable energy systems to utilize their waste heat and enhance the performance of these plants effectively. This research aimed to optimize and address the environmental challenges of MED-TVC desalination plants in areas with insufficient sunlight, unstable weather conditions, and limited economic resources. To this end, a model of an electric heater for generating thermal energy coupled with an optimized MED-TVC desalination plant was proposed. The MED-TVC section was optimized by incorporating an additional ejector in the final stage of MED-TVC demonstrating an increase of over 11 % in evacuating non-condensable gases from the last effect and increasing the product water by up to 14.89 %. Regarding the design of the electric heating elements used in electric heaters, the use of one-plus-two U-tubes with helical baffles was more efficient than multi-layer U-tubes with segmental baffles as improved the pressure loss of the thermal fluid by 25 % and increased the heat transfer coefficient of the heating elements to 18 %. The power section was also equipped with an off-grid system to provide the necessary power for the equipment of the proposed model. In the economic analysis of employing a parabolic trough solar collector and electric heaters, not only were the direct costs of the electric heaters almost equal to just 40 % of the direct costs of the parabolic trough solar collector approach but also the required thermal fluid was 50 % of the solar case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources and Industry
Water Resources and Industry Social Sciences-Geography, Planning and Development
CiteScore
8.10
自引率
5.90%
发文量
23
审稿时长
75 days
期刊介绍: Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信