{"title":"Research hotspots and emerging trends in growth and development of macrofungi: a bibliometric review based on CiteSpace analysis.","authors":"Xueyan Sun, Dongmei Liu, Xihong Zhao","doi":"10.1007/s11274-024-04168-8","DOIUrl":"10.1007/s11274-024-04168-8","url":null,"abstract":"<p><p>Macrofungi (or mushrooms) are essential for agriculture, food, and ecology. Although research on the growth and development of macrofungi (GDM) can provide insights into their biological characteristics and metabolite synthesis mechanisms, further exploration is needed for a systematic and visual analysis of the current research progress on GDM. To comprehensively understand the research status and development trend of GDM, a total of 545 scientific literature related to GDM in the Web of Science Core Collection database from 2008 to 2024 were searched and selected as research objects. The general information (publication year, country, institution, and cited journal) and the specific information (co-authorship, keyword co-occurrence, and references with strong citation bursts) were mined and visualized in detail based on CiteSpace software. These analyses demonstrated that related research is still fashionable, and China is dominant and influential in this field. More frequent and in-depth cooperation among authors, institutions and regions is conducive to promoting the research on GDM. Additionally, the quantity and cluster analyses of keywords and references demonstrated that medicinal/edible macrofungi and sustainable development (e.g. mushroom substrate reuse) may be research hotspots and will remain popular in the coming years. This research aims to supply researchers with up-to-date knowledge and cutting-edge issues related to GDM by providing a visually appealing representations on quantitative GDM studies.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"365"},"PeriodicalIF":4.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring flagellar contributions to motility and virulence in Arcobacter butzleri.","authors":"Raquel Santos, Cristiana Mateus, Mónica Oleastro, Susana Ferreira","doi":"10.1007/s11274-024-04175-9","DOIUrl":"10.1007/s11274-024-04175-9","url":null,"abstract":"<p><p>Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"367"},"PeriodicalIF":4.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangshuo Liu, Rong Nie, Kaisheng Shen, Xinjie Diao, Guorong Liu
{"title":"Multi-omics profiling reveals the molecular mechanism of Bifidobacterium animalis BB04 in co-culture with Wickerhamomyces anomalus Y-5 to induce bifidocin A synthesis.","authors":"Yangshuo Liu, Rong Nie, Kaisheng Shen, Xinjie Diao, Guorong Liu","doi":"10.1007/s11274-024-04172-y","DOIUrl":"10.1007/s11274-024-04172-y","url":null,"abstract":"<p><p>Bacteriocin is a kind of natural substance that can effectively inhibit bacteria, but its production usually limited by environment. Co-culture is a strategy to stimulate bacteriocin production. Bifidocin A produced by Bifidobacterium animalis BB04, is a novel bacteriocin with a broad-spectrum antimicrobial active of foodborne bacteria. In order to enhance bifidocin A production, bacteriocin-inducing strains were screened firstly in co-cultivation. Then, the molecular mechanism of co-cultural induction was investigated by transcriptomic and proteomic analysis. Finally, the key inducing metabolites were identified by using targeted metabolomic technology. The results showed that Wickerhamomyces anomalus Y-5 in co-cultivation could significantly enhance bifidocin A production, with a 3.00-fold increase compared to mono-culture. The induction may not depend on direct contact with cells and may instead be attributed to be continuous exposure to inducing substances at specific concentration. In co-cultivation, W. anomalus Y-5 up-regulated Hxk2 and Tap42 to activate Glucose-cAMP and Tor and HOG-MAPK pathway, stimulated the expression of the retrograde gene, produced glutamine and glycerol to maintain activity. During this process, glutamine, inosine, guanosine, adenine, uracil, fumaric acid and pyruvic acid produced by W. anomalus Y-5 could induce the synthesis of bifidocin A. In conclusion, W. anomalus Y-5 in co-cultivation induced the synthesis of bifidocin A by regulating various signaling pathways to produce inducing substances. These findings establish a foundation for high-efficient synthesis of bifidocin A and provide a new perspective into the industrial production of bacteriocin.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"366"},"PeriodicalIF":4.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress.","authors":"Linke Guo, Shuangwei Li, Dongle Cheng, Xiao Lu, Xinying Gao, Linlin Zhang, Jianjiang Lu","doi":"10.1007/s11274-024-04171-z","DOIUrl":"10.1007/s11274-024-04171-z","url":null,"abstract":"<p><p>The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"364"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masahiro Yoda, Shogo Takase, Kaho Suzuki, Aito Murakami, Fu Namai, Takashi Sato, Tadashi Fujii, Takumi Tochio, Takeshi Shimosato
{"title":"Development of engineered IL-36γ-hypersecreting Lactococcus lactis to improve the intestinal environment.","authors":"Masahiro Yoda, Shogo Takase, Kaho Suzuki, Aito Murakami, Fu Namai, Takashi Sato, Tadashi Fujii, Takumi Tochio, Takeshi Shimosato","doi":"10.1007/s11274-024-04157-x","DOIUrl":"10.1007/s11274-024-04157-x","url":null,"abstract":"<p><p>Interleukin (IL) 36 is a member of the IL-1-like proinflammatory cytokine family that has a protective role in mucosal immunity. We hypothesized that mucosal delivery of IL-36γ to the intestine would be a very effective way to prevent intestinal diseases. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse IL-36γ (rmIL-36γ). Western blotting and enzyme-linked immunosorbent assay results showed that the engineered strain (NZ-IL36γ) produced and hypersecreted the designed rmIL-36γ in the presence of nisin, which induces the expression of the recombinant gene. We administered NZ-IL36γ to mice via oral gavage, and collected the ruminal contents and rectal tissues. Colony PCR using primers specific for NZ-IL36γ, and enzyme-linked immunosorbent assay to measure the rmIL-36γ concentrations of the ruminal contents showed that NZ-IL36γ colonized the mouse intestines and secreted rmIL-36γ. A microbiota analysis revealed increased abundances of bacteria of the genera Acetatifactor, Eubacterium, Monoglobus, and Roseburia in the mouse intestines. Real-time quantitative PCR of the whole colon showed increased Muc2 expression. An in vitro assay using murine colorectal epithelial cells and human colonic cells showed that purified rmIL-36γ promoted Muc2 gene expression. Taken together, these data suggest that NZ-IL36γ may be an effective and attractive tool for delivering rmIL-36γ to improve the intestinal environment.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"363"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashraf Sami Hassan Al-Hasabe, Ahmad Faizal Bin Abdull Razis, Nadiya Akmal Binti Baharum, Choo Yee Yu, Nurulfiza Binti Mat Isa
{"title":"Production and analysis of synthesized bacterial cellulose by Enterococcus faecalis strain AEF using Phoenix dactylifera and Musa acuminata fruit extracts.","authors":"Ashraf Sami Hassan Al-Hasabe, Ahmad Faizal Bin Abdull Razis, Nadiya Akmal Binti Baharum, Choo Yee Yu, Nurulfiza Binti Mat Isa","doi":"10.1007/s11274-024-04159-9","DOIUrl":"10.1007/s11274-024-04159-9","url":null,"abstract":"<p><p>Bacterial cellulose (BC) is a highly versatile biopolymer renowned for its exceptional mechanical strength, water retention, and biocompatibility. These properties make it a valuable material for various industrial and biomedical applications. In this study, Enterococcus faecalis synthesized extracellular BC, utilizing Phoenix dactylifera and Musa acuminata fruit extracts as sustainable carbon sources. LC-MS analysis identified glucose as the primary carbohydrate in these extracts, providing a suitable substrate for BC production. Scanning Electron Microscopy (SEM) revealed a network of BC nanofibers on Congo red agar plates. ATR-FTIR spectroscopy confirmed the presence of characteristic cellulose functional groups, further supporting BC synthesis. X-ray diffraction (XRD) analysis indicated a high crystallinity index of 71%, consistent with the cellulose I structure, as evidenced by peaks at 16.22°, 21.46°, 22.52°, and 34.70°. Whole-genome sequencing of E. faecalis identified vital genes involved in BC biosynthesis, including bcsA, bcsB, diguanylate cyclase (DGC), and 6-phosphofructokinase (pfkA). Antibiotic susceptibility tests revealed resistance to cefotaxime, ceftazidime, and ceftriaxone, while susceptibility to imipenem was observed. Quantitative assessment demonstrated that higher concentrations of fruit extracts (5.0-20 mg/mL) significantly enhanced BC production. Cytotoxicity testing via the MTT assay confirmed excellent biocompatibility with NIH/3T3 fibroblast cells, showing high cell viability (97-105%). Unlike commonly studied Gram-negative bacteria like Acetobacter xylinum for BC production, this research focuses on Gram-positive Enterococcus faecalis and utilizes Phoenix dactylifera and Musa acuminata fruit extracts as carbon sources. This approach offers a sustainable and promising avenue for BC production.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"362"},"PeriodicalIF":4.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elnaz Ahani, Majid Montazer, Ali Mianehro, Nasrin Samadi, Tayebeh Toliyat, Mahnaz Mahmoudi Rad
{"title":"Encapsulation of the PHMB with nanoliposome and attachment to wound dressing for long-term antibacterial activity and biocompatibility.","authors":"Elnaz Ahani, Majid Montazer, Ali Mianehro, Nasrin Samadi, Tayebeh Toliyat, Mahnaz Mahmoudi Rad","doi":"10.1007/s11274-024-04170-0","DOIUrl":"10.1007/s11274-024-04170-0","url":null,"abstract":"<p><p>Concentration control of some drug are used commonly however their uncontrolled concentration renders severe side effects. Therefore, it is substantial to come up with innovation release control methods. There is a strong affinity between the phospholipid of nanoliposomes and wool cells which facilitate the diffusion of liposomes into the wool structure. On the other hand, polyhexamethylene biguanide (PHMB) has gained popularity as an antibacterial agent; however, the compound's cytotoxicity has limited its usefulness. By compounding these facts, this work introduces a novel method for sustained drug release via internalization. In this method, PHMB was detained into nanoliposomes infiltrated the wool to generate an extremely regulated release, which was established using various techniques. SEM pictures demonstrated effective absorption of nanoliposome-encapsulated PHMB within the wool fabric. The developed wound dressing showed a sustained drug release, and consequently, perfect biocompatibility and enduring antibacterial activity.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"361"},"PeriodicalIF":4.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global regulator AdpA directly binds to tunicamycin gene cluster and negatively regulates tunicamycin biosynthesis in Streptomyces clavuligerus.","authors":"Çiğdem Otur, Aslıhan Kurt-Kızıldoğan","doi":"10.1007/s11274-024-04160-2","DOIUrl":"10.1007/s11274-024-04160-2","url":null,"abstract":"<p><p>Since a transcriptional regulator has yet to be identified within the tunicamycin biosynthetic gene cluster in Streptomyces clavuligerus, we conducted a comprehensive investigation by focusing on the possible function of the pleiotropic regulator AdpA on tunicamycin. The genes encoding early steps of tunicamycin biosynthesis were significantly upregulated in S. clavuligerus ΔadpA. At the same time, they were downregulated in adpA overexpressed strain as shown by RNA-sequencing (RNA-seq) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis. The tunicamycin gene cluster's co-transcription pattern was understood by reverse transcriptase polymerase chain reaction (RT-PCR). Our Electrophoretic Mobility Shift Assay (EMSA) data clearly showed AdpA's binding to the upstream sequence of the tunA gene, asserting its regulatory control. In addition to its direct negative regulation of tunicamycin biosynthesis, AdpA operates at a global level by orchestrating various regulatory genes in S. clavuligerus, such as wblA, whiB, bldM, arpA, brp, and adsA involved in morphological differentiation and secondary metabolite biosynthesis as depicted in RNA-seq data. This study represents a significant milestone by unveiling the AdpA regulator's pathway-specific and global regulatory effect in S. clavuligerus.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"360"},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenchen Go, Intan Haslina Ishak, Kamarul Zaman Zarkasi, Ghows Azzam
{"title":"Salvianolic acids modulate lifespan and gut microbiota composition in amyloid-β-expressing Drosophila melanogaster.","authors":"Wenchen Go, Intan Haslina Ishak, Kamarul Zaman Zarkasi, Ghows Azzam","doi":"10.1007/s11274-024-04163-z","DOIUrl":"10.1007/s11274-024-04163-z","url":null,"abstract":"<p><p>Alzheimer's disease (AD), a form of neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ), hyperphosphorylated Tau, and neuroinflammation. The increasing population affected by AD urges for the development of effective treatments. The correlation between AD and gut microbiome remains underexplored, potentially providing a better understanding of the disease. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B) are the active components extracted from Salvia miltiorrhiza (Danshen), and their antioxidant, anti-inflammation and Aβ inhibition activities were shown previously. In this study, these compounds were used to investigate their effects on Aβ toxicity, using Drosophila melanogaster expressing human Aβ42 as the model organism, by examining their lifespan and changes in gut bacterial communities. The study used two batches of flies, reared on food with or without methylparaben (MP) supplementation to evaluate the influence of MP on this animal model during pharmacological studies. MP is a common antimicrobial agent used in flies' food. The treatment of Sal A prolonged the lifespan of Aβ-expressing flies reared on MP-supplemented food significantly (P < 0.001), but not those without MP. The lifespan of Sal B-treated flies did not show a significant difference compared to untreated flies for both groups reared on food with and without MP. Sal A-treated flies in the presence of MP exhibited a lower abundance of Corynebacterium and Enterococcus than the untreated flies, while Lactiplantibacillus was the most dominant taxa. Urea cycle was predicted to be predominant in this group compared to the untreated group. The control group, Aβ-expressing flies treated with Sal A and Sal B on MP-supplemented food had improved lifespan compared to their respective groups reared on food without MP, while untreated Aβ-expressing flies was the exception. The gut microbiota composition of flies reared on MP-supplemented food was also significantly different from those without MP (P < 0.001).</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"358"},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanhua Hou, Jiarui Qiao, Shumiao Hou, Yatong Wang, Quanfu Wang
{"title":"Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206.","authors":"Yanhua Hou, Jiarui Qiao, Shumiao Hou, Yatong Wang, Quanfu Wang","doi":"10.1007/s11274-024-04158-w","DOIUrl":"10.1007/s11274-024-04158-w","url":null,"abstract":"<p><p>Alkyl hydroperoxide reductase subunit C (AhpC) contributes to the cellular defense against reactive oxygen species. However, it remains understudied in psychrophiles. Amino acid comparison demonstrated that AhpC from Psychrobacter sp. ANT206 (ANT206) (PsAhpC) revealed fewer numbers of Lys and more numbers of Gly, which might have favored higher flexibility at low temperature. The recombinant PsAhpC (rPsAhpC) was most active at 25 °C and retained 35% of its residual activity at 0 °C, indicating that it was a cold-adapted enzyme. Additionally, rPsAhpC demonstrated significant salt tolerance, sustaining its activity in the presence of 4.0 M NaCl. Molecular dynamics simulations indicated that PsAhpC had comparatively loose conformation, which facilitated reactions at low temperatures. Subsequently, an ahpc knockout mutant was constructed, and the growth rate of the knockout mutant significantly decreased, suggesting that ahpc might be crucial for the growth of ANT206 at low temperatures. The findings provide a robust foundation for further investigation into the structural features and catalytic characterization of cold-adapted AhpC. The structural characteristics of PsAhpC and its cold tolerance and salt tolerance may be applied to stress resistance breeding of various organisms.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"359"},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}