Mauricio Ramirez-Castrillon, Tatiana Andrea Benavides-León, Lizeth Vanessa Arcos-Velasco, Kriss Dayana Pantoja-Pulido, Lizbeth Lorena Lopez-Parra, Ana Cristina Bolaños-Rojas, Esteban Osorio-Cadavid
{"title":"Tropical lakes as a novel source of oleaginous yeasts with lipid profiles for biodiesel, oleochemical, and nutraceutical applications.","authors":"Mauricio Ramirez-Castrillon, Tatiana Andrea Benavides-León, Lizeth Vanessa Arcos-Velasco, Kriss Dayana Pantoja-Pulido, Lizbeth Lorena Lopez-Parra, Ana Cristina Bolaños-Rojas, Esteban Osorio-Cadavid","doi":"10.1007/s11274-025-04309-7","DOIUrl":"10.1007/s11274-025-04309-7","url":null,"abstract":"<p><p>Oleaginous yeasts have emerged as promising microbial cell factories for lipid production, offering sustainable alternatives to traditional sources of biodiesel and nutraceuticals. In this study, the lipid accumulation potential of yeast strains isolated from two freshwater aquatic ecosystems in Cali, Colombia, was evaluated to identify novel candidates for biotechnological applications. A total of 56 strains were tested for their oleaginous nature using a gravimetric lipid assay with glucose as a carbon source. Of the assessed strains, 46.15% exceeded 20% lipid yields relative to the dry biomass. Seven strains were selected using glycerol as a carbon source, but only five yeasts were further characterized for their lipid profiles. Molecular identification revealed diverse species, including Aureobasidium sp., Papiliotrema rajashtanensis, Rhodotorula spp., and Clavispora lusitaniae. The selected strains demonstrated unique lipid profiles, with high proportions of monounsaturated and polyunsaturated fatty acids, such as oleic acid (C18:1) and linoleic acid (C18:2). In particular, Aureobasidium sp. accumulated uncommon fatty acids such as petroselinic acid under conditions induced by glycerol. This fatty acid, which has a double bond in position 6,7 and a melting point of 33 °C, highlights its potential as an alternative to margarine production, as well as a precursor to sophorolipids, estolide esters, soaps, and plastics. Rhodotorula sp. exhibited very long-chain fatty acids such as docosadienoic and docosatrienoic acids in its lipid profile. These findings underscore the biotechnological value of yeasts from lentic aquatic systems as sustainable lipid producers, paving the way for innovations in biofuels, nutraceuticals, and oleochemicals.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"105"},"PeriodicalIF":4.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vitamin D3 potentiates antimicrobial and antibiofilm activities of streptomycin and thymoquinone against Pseudomonas aeruginosa.","authors":"Priyam Biswas, Soham Bose, Sudipta Chakraborty","doi":"10.1007/s11274-025-04304-y","DOIUrl":"https://doi.org/10.1007/s11274-025-04304-y","url":null,"abstract":"<p><p>Biofilm formed by Pseudomonas aeruginosa is a three dimensional microbial matrix that confers multidrug resistance properties along with the proficiency to evade the host immune system. The present study aims to determine the combinatorial effects of vitamin D3 (cholecalciferol) with two already reported antibiofilm agents: streptomycin and thymoquinone separately against P. aeruginosa biofilms. The minimum inhibitory concentration of streptomycin, thymoquinone and D3 was found to be 20, 10 and 100 μg/mL respectively. The inhibition of biofilm formation and pre-formed biofilm disintegration properties of streptomycin and thymoquinone alone or in combination with D3 at their sub-MIC concentration was determined by crystal violet staining and confocal laser scanning microscopy. A significant inhibition of metabolic activities like oxygen consumption rate and reduction in quorum sensing related cellular activities like swarming motilities, pyocyanin production and extracellular protease secretion by P. aeruginosa were also observed as a result of this combinatorial effect. Both of these combinatorial applications were found to accumulate ROS in bacterial cells, which has been proved to be one of the main causes of their antibiofilm activity. Effect of these two drug combinations on bacterial lettuce leaf infection was also evaluated. Molecular docking analysis indicated that thymoquinone combined D3 can interact more efficiently with the quorum sensing proteins LasI and LasR. The host cell cytotoxicity of these two combinations was found to be negligible on the murine macrophage cell line. These findings suggest that D3 potentiates the antimicrobial and antibiofilm efficacy of both streptomycin and thymoquinone against P. aeruginosa. Although both combinations have shown significant antibiofilm and antimicrobial potential, combinatorial performances of D3 combined thymoquinone were found to be more promising.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"104"},"PeriodicalIF":4.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Causal associations between 26 musculoskeletal disorders and gut microbiota: a Mendelian randomization analysis with Bayesian validation.","authors":"Yunhao Wang, Yingze Sun, Hongxing Liao","doi":"10.1007/s11274-025-04318-6","DOIUrl":"10.1007/s11274-025-04318-6","url":null,"abstract":"<p><p>Emerging evidence suggests that gut microbiota imbalances may influence the onset of musculoskeletal disorders (MSDs), yet conclusive evidence establishing causation remains limited. This study investigates the causal relationship between gut microbiota and a range of MSDs, aiming to identify potential therapeutic targets. Using data on 211 gut microbiome taxa from a genome-wide association study (GWAS) and summary statistics for 26 MSDs from the Finnish Biobank, we employed Mendelian randomization (MR) with inverse-variance weighting (IVW) as the primary analytical approach, complemented by Bayesian model validation to ensure robust results. Our MR analyses revealed significant causal associations between gut microbiota and nine MSDs within four categories, including osteoporosis (IVW-Beta = 0.011, P = 0.025), rheumatoid arthritis (IVW-Beta = - 0.016, P < 0.001), rotator cuff syndrome (IVW-Beta = - 0.007, P = 0.022), and calcific tendonitis of the shoulder (IVW-Beta = - 0.021, P = 0.034). Bayesian validation underscored the plausibility of these relationships, supporting the potential causal role of gut microbiota in the development of these disorders. Our findings present a library of causal associations that underscore the gut microbiome's role in MSD pathogenesis, providing genetic evidence that highlights specific gut microbiota taxa as prospective therapeutic targets. This research offers novel insights into the pathogenic mechanisms underlying MSDs and points toward new directions for future investigation into microbiome-based therapies.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"106"},"PeriodicalIF":4.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibiotic potential and metabolic modulation of Bacillus velezensis VTRNT 01 in response to bacterial elicitors.","authors":"Thanh-Dung Nguyen, Huu-Nghia Duong, Thi-Pha Nguyen, Phu-Tho Nguyen, Huu-Hiep Nguyen, Thi-Tho Nguyen, Ha-Giang Pham, Dieu-Hien Truong, Huu-Thanh Nguyen","doi":"10.1007/s11274-025-04311-z","DOIUrl":"https://doi.org/10.1007/s11274-025-04311-z","url":null,"abstract":"<p><p>Bacterial elicitors are recognized for their ecological role in stimulating plant defenses and enhancing the production of beneficial metabolites. This study explores the antibiotic potential of endophytic Bacillus velezensis VTRNT 01, isolated from Adenosma bracteosum Bonati, under co-cultivation with bacterial elicitors (Staphylococcus aureus, Escherichia coli, and Aeromonas hydrophila). By leveraging these interactions, we aim to unlock the full potential of endophytic bacteria for sustainable applications in agriculture and pharmaceuticals. Using gas chromatography-mass spectrometry (GC-MS) analysis, we identified a total of 42 distinct chemical compounds produced under these conditions. Notably, 15 of these compounds were exclusively induced by the elicitor treatment, suggesting a strong interactive effect between Bacillus velezensis and the elicitors. Among the identified compounds, several have well-documented antimicrobial properties, including benzaldehyde, benzeneacetic acid, and tetradecanoic acid, which were shown to exhibit significant antibacterial activity against common pathogens. These findings demonstrate the potential of bio-elicitor strategies to enhance the biosynthesis of antimicrobial compounds, paving the way for innovative solutions in crop protection and the development of new therapeutic agents.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"102"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziqi Zhai, Mengwei Zhang, Ruya Yin, Siji Zhao, Zhen Shen, Yonglin Yang, Xuan Zhang, Jianing Wang, Yifei Qin, Dan Xu, Ligang Zhou, Daowan Lai
{"title":"CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2.","authors":"Ziqi Zhai, Mengwei Zhang, Ruya Yin, Siji Zhao, Zhen Shen, Yonglin Yang, Xuan Zhang, Jianing Wang, Yifei Qin, Dan Xu, Ligang Zhou, Daowan Lai","doi":"10.1007/s11274-025-04313-x","DOIUrl":"https://doi.org/10.1007/s11274-025-04313-x","url":null,"abstract":"<p><p>Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"103"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metagenomic insights of microbial functions under conventional and conservation agriculture.","authors":"Samrendra Singh Thakur, Stefany Solano González, Prashanth Suravajhala, Subodh Kumar Jain, Shweta Yadav, Karthik Sankar Narayan, Edwinraj Esack, Yakov Kuzyakov, Anisa Ratnasari","doi":"10.1007/s11274-025-04312-y","DOIUrl":"https://doi.org/10.1007/s11274-025-04312-y","url":null,"abstract":"<p><p>Agricultural practices such as conventional (CN) and conservation agriculture (CA) influence the composition and structure of soil microorganisms. We used short reads and genome-resolved metagenomic-based dual sequencing approaches to create a profile of bacterial and archaeal communities in hyperthermic Typic Haplustepts soil after seven years of CA and CN. The most differences in the physico-chemical and biological properties of soil were higher pH, organics carbon, available nitrogen and microbial biomass contents, activities of dehydrogenase, β-glucosidase, and arylsulfatase, found in CA soil. The dominant bacterial taxa under both management types were Pseudomonadota (46-48%), Acidobacteriota (12-13%), Planctomycetota (8-10%), Bacteroidota (7-8%), and Actinomycetota (6-7%). Nitrososphaerota (1.1-1.5%) was the predominant archaeal phyla in CA and CN soils. The alpha diversity was 1.5 times higher in CA compared to CN soils. Fourteen high-quality (HQ) metagenomic-assembled genomes (MAGs) were recovered from both groups. Four HQ metagenome-assembled genomes (MAGs) from the Pseudomonadota phylum were exclusively recovered from the CA soil. The dominance of this phylum in the CA soil might be correlated with its nutrient richness, as certain classes of Pseudomonadota, such as Alpha, Beta-, Gamma-, and Deltaproteobacteria, are known to be copiotrophic. Copiotrophic organisms thrive in nutrient-rich environments, which could explain their prevalence in the CA soil. CAZyme gene analysis showed that Glycoside Hydrolases (GH) and GlycosylTransferases (GT) classes are dominant in the CA group, possibly due to higher substrate availability from the application of crop residues, which provide a rich source of complex carbohydrates. Several biogeochemical gene families related to C1 compounds, hydrogen, oxygen, and sulfur metabolism were enriched in CA soils, suggesting these practices may contribute to a soil environment with increased organic matter content, microbial diversity, and nutrient availability. Overall, CA practices seemed to improve soil health by supporting soil microbial communities abundance.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"100"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luisa M Trejo-Alarcon, Carolina Cano-Prieto, Ana Calheiros de Carvalho, Daniela Rago, Linda Ahonen, Pablo Cruz-Morales, Cuauhtémoc Licona-Cassani
{"title":"Integrative metabolo-genomics suggests a biosynthetic pathway for tetrangulol in Streptomyces sp. KL110A.","authors":"Luisa M Trejo-Alarcon, Carolina Cano-Prieto, Ana Calheiros de Carvalho, Daniela Rago, Linda Ahonen, Pablo Cruz-Morales, Cuauhtémoc Licona-Cassani","doi":"10.1007/s11274-025-04298-7","DOIUrl":"10.1007/s11274-025-04298-7","url":null,"abstract":"<p><p>Natural products (NPs) of microbial origin are highly valued for their diverse bioactive properties. Among bacteria, Streptomyces stands out as a prolific source of NPs with applications in medicine and agriculture. Recent advances in metabolomics, and bioinformatics as well as the abundance of genomic data have revolutionized the study of NPs, enabling the rapid connection of biosynthetic pathways and metabolites. However, discovering novel compounds from large pools of genomes and strains is cumbersome. Metabolo-genomics approaches are promising strategies that can save time and resources at initial stages of the natural product discovery pipeline by rapidly linking molecules and their biosynthetic genes. Here, we present genomic characterization and metabolomic profiling of Streptomyces sp. KL110A, a strain isolated from the rainforest soils of Calakmul, Campeche in Mexico. Using genome mining tools and LC-MS/MS metabolomics, we identified and characterized known biosynthetic gene clusters (BGCs) and proposed a biosynthetic mechanism for the biosynthesis of the benz(a)anthraquinone tetrangulol. Our findings underscore the relevance of integrating genomic and metabolomic approaches in elucidating novel biosynthetic pathways, positively contributing to the field of natural product research.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"101"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin
{"title":"Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in Yarrowia lipolytica.","authors":"Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin","doi":"10.1007/s11274-025-04314-w","DOIUrl":"https://doi.org/10.1007/s11274-025-04314-w","url":null,"abstract":"<p><p>Brassinolide (BL) is the most bioactive plant growth regulator among Brassinosteroids (BRs), belonging to the sixth class of plant hormones. However, its low natural abundance limits large-scale agricultural applications. An unnatural sterol, 24-epi-ergosterol, was proposed as a semi-synthetic precursor for economic production of BL. Here, we constructed a synthetic pathway for 24-epi-ergosterol in Yarrowia lipolytica, which has abundant acetyl-CoA content and a hydrophobic intracellular environment. Initially, we introduced a mutant plant-derived Δ<sup>24(28)</sup> sterol reductase (Dwf1) into Y. lipolytica to enable 24-epi-ergosterol production. The production of 24-epi-ergosterol was subsequently enhanced by regulating sterol homeostasis, optimizing transcriptional regulators, and overexpressing key pathway genes. Next, the accumulation of 24-epi-ergosterol was further improved by increasing acetyl-CoA levels and adjusting lipid metabolism. Finally, the 24-epi-ergosterol production reached 1626.85 mg/L after optimizing the fermentation conditions and performing a fed-batch culture in a 2 L fermenter. This study represents the first successful de novo synthesis of 24-epi-ergosterol in Y. lipolytica, offering a novel approach for the industrial production of BL.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"98"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Broad-spectrum antimicrobial properties of linalool: supporting its pharmacological use in chronic wound infections by pathogens within the ESKAPE group and polymicrobial biofilms.","authors":"Akshatha Rai, Yuvarajan Subramaniyan, Fida Fathima, Punchappady Devasya Rekha","doi":"10.1007/s11274-025-04317-7","DOIUrl":"https://doi.org/10.1007/s11274-025-04317-7","url":null,"abstract":"<p><p>Chronic wound infections are caused by biofilm forming opportunistic pathogenic bacteria. The persistence of infection, co-infecting pathogens and prolonged use of antibiotics promote antibiotic resistance hampering healing process due to increased inflammation. Hence, we tested the broad range antibacterial activity of linalool, a bioactive monoterpene commonly present in many essential oils having anti-inflammatory and antimicrobial activities to target different opportunistic pathogens commonly found in the chronic wound. We included some of the common pathogens such as Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus, to study the broad range antimicrobial efficacy of linalool. The in vitro effect of linalool on biofilm was quantified in pre-treatment, post-treatment, repetitive treatment, and polymicrobial biofilm scenarios. Time-kill and XTT (2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2 H-tetrazolium-5-carboxanilide) assays were performed to confirm the efficacy of linalool against wound infections, and these results were further validated using simulated wound exudates medium (WEM) which mimics the wound environment. The mechanism of bactericidal action was determined using assays for membrane integrity and oxidative stress. The results indicated the broad range antimicrobial activity of linalool with minimum inhibitory concentration (MIC) ranging from 2.5 to 5 µL/mL against E. coli, A. baumannii, E. faecalis, S. aureus, and K. pneumoniae, while for P. aeruginosa the MIC was 20 µL/mL. Linalool was most effective against E. coli, E. faecalis, K. pneumoniae, A. baumannii, and S. aureus, and could inhibit the growth and biofilm by more than 90% and 80%, respectively, at 5 µL/mL. The XTT assay confirmed the MIC results, showing a significant reduction in the metabolic activity of the pathogens (p < 0.001). In the simulated WEM similar response of the bacteria to linalool treatment was observed. At 5 to 20 µL/mL concentrations, linalool significantly inhibited the polymicrobial biofilm consisting of P. aeruginosa, A. baumannii, and S. aureus in two species combinations. The mechanism of bactericidal action was associated with the increased reactive oxygen species production and disruption in the membrane integrity leading to release of cellular content. The anti-inflammatory activity of linalool, assessed using the albumin denaturation method showed significant activity at the tested concentrations. In conclusion, the findings suggest the therapeutic potential of linalool in treating biofilm associated chronic wound infections due to its versatile broad spectrum activity.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"99"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhuha Saeed Ali, Reza Vazifehmand, Maysoon Abulwahid Malik, Yaya Rukayadi, Son Radu, Mirsasan Mirpour, Mahmud Ab Rashid Nor-Khaizura
{"title":"Molecular profiling and bioinformatics approaches of biofilm formation in ionizing radiation-resistant Bacillus subtilis, isolated from geothermal spring in Ramsar, the North of Iran.","authors":"Dhuha Saeed Ali, Reza Vazifehmand, Maysoon Abulwahid Malik, Yaya Rukayadi, Son Radu, Mirsasan Mirpour, Mahmud Ab Rashid Nor-Khaizura","doi":"10.1007/s11274-025-04307-9","DOIUrl":"https://doi.org/10.1007/s11274-025-04307-9","url":null,"abstract":"<p><p>Biofilm formation and its molecular signaling in bacteria resistant to ionizing radiation is not fully understood. This study aimed to investigate the genetic variations and gene expression of biofilm in an ionizing radiation-resistant Bacillus subtilis in Ramsar. Direct sequencing and quantitative PCR were applied to determine nucleotide variations and gene expression profiles of tapA-sipW-tasA, sinR, sinI, ccpA, epsA-O, spoOB, spoOA, slrA, slrR, ymcA and abrB genes. RNAsnp-RNAfold and Phyre2 and the Swiss Model webserver were used to analyze the structural mRNA and protein respectively. At the molecular level, the tapA-sipW-tasA operon was significantly overexpressed and the expression of ccpA and slrR was significantly downregulated. The thermodynamic and ensemble diversity ratio of the tapA (G>C) gene showed the largest changes in RNA secondary structure. In addition, the largest protein pocket belonged to tapA (148.6 A<sup>03</sup>) compared to the normal structure (121.1 A<sup>03</sup>). A non-radiation Bacillus subtilis was served as a control group. These results support the hypothesis that the induction of robust biofilm formation is through the (tapA) operon signal in ionizing radiation-resistant B. subtilis and that genetic variation in tapA (G>C) was the major gene associated with diversity in robust biofilm formation.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"97"},"PeriodicalIF":4.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}