World journal of microbiology & biotechnology最新文献

筛选
英文 中文
CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-12 DOI: 10.1007/s11274-025-04313-x
Ziqi Zhai, Mengwei Zhang, Ruya Yin, Siji Zhao, Zhen Shen, Yonglin Yang, Xuan Zhang, Jianing Wang, Yifei Qin, Dan Xu, Ligang Zhou, Daowan Lai
{"title":"CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2.","authors":"Ziqi Zhai, Mengwei Zhang, Ruya Yin, Siji Zhao, Zhen Shen, Yonglin Yang, Xuan Zhang, Jianing Wang, Yifei Qin, Dan Xu, Ligang Zhou, Daowan Lai","doi":"10.1007/s11274-025-04313-x","DOIUrl":"10.1007/s11274-025-04313-x","url":null,"abstract":"<p><p>Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"103"},"PeriodicalIF":4.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metagenomic insights of microbial functions under conventional and conservation agriculture.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-11 DOI: 10.1007/s11274-025-04312-y
Samrendra Singh Thakur, Stefany Solano González, Prashanth Suravajhala, Subodh Kumar Jain, Shweta Yadav, Karthik Sankar Narayan, Edwinraj Esack, Yakov Kuzyakov, Anisa Ratnasari
{"title":"Metagenomic insights of microbial functions under conventional and conservation agriculture.","authors":"Samrendra Singh Thakur, Stefany Solano González, Prashanth Suravajhala, Subodh Kumar Jain, Shweta Yadav, Karthik Sankar Narayan, Edwinraj Esack, Yakov Kuzyakov, Anisa Ratnasari","doi":"10.1007/s11274-025-04312-y","DOIUrl":"10.1007/s11274-025-04312-y","url":null,"abstract":"<p><p>Agricultural practices such as conventional (CN) and conservation agriculture (CA) influence the composition and structure of soil microorganisms. We used short reads and genome-resolved metagenomic-based dual sequencing approaches to create a profile of bacterial and archaeal communities in hyperthermic Typic Haplustepts soil after seven years of CA and CN. The most differences in the physico-chemical and biological properties of soil were higher pH, organics carbon, available nitrogen and microbial biomass contents, activities of dehydrogenase, β-glucosidase, and arylsulfatase, found in CA soil. The dominant bacterial taxa under both management types were Pseudomonadota (46-48%), Acidobacteriota (12-13%), Planctomycetota (8-10%), Bacteroidota (7-8%), and Actinomycetota (6-7%). Nitrososphaerota (1.1-1.5%) was the predominant archaeal phyla in CA and CN soils. The alpha diversity was 1.5 times higher in CA compared to CN soils. Fourteen high-quality (HQ) metagenomic-assembled genomes (MAGs) were recovered from both groups. Four HQ metagenome-assembled genomes (MAGs) from the Pseudomonadota phylum were exclusively recovered from the CA soil. The dominance of this phylum in the CA soil might be correlated with its nutrient richness, as certain classes of Pseudomonadota, such as Alpha, Beta-, Gamma-, and Deltaproteobacteria, are known to be copiotrophic. Copiotrophic organisms thrive in nutrient-rich environments, which could explain their prevalence in the CA soil. CAZyme gene analysis showed that Glycoside Hydrolases (GH) and GlycosylTransferases (GT) classes are dominant in the CA group, possibly due to higher substrate availability from the application of crop residues, which provide a rich source of complex carbohydrates. Several biogeochemical gene families related to C1 compounds, hydrogen, oxygen, and sulfur metabolism were enriched in CA soils, suggesting these practices may contribute to a soil environment with increased organic matter content, microbial diversity, and nutrient availability. Overall, CA practices seemed to improve soil health by supporting soil microbial communities abundance.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"100"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative metabolo-genomics suggests a biosynthetic pathway for tetrangulol in Streptomyces sp. KL110A.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-11 DOI: 10.1007/s11274-025-04298-7
Luisa M Trejo-Alarcon, Carolina Cano-Prieto, Ana Calheiros de Carvalho, Daniela Rago, Linda Ahonen, Pablo Cruz-Morales, Cuauhtémoc Licona-Cassani
{"title":"Integrative metabolo-genomics suggests a biosynthetic pathway for tetrangulol in Streptomyces sp. KL110A.","authors":"Luisa M Trejo-Alarcon, Carolina Cano-Prieto, Ana Calheiros de Carvalho, Daniela Rago, Linda Ahonen, Pablo Cruz-Morales, Cuauhtémoc Licona-Cassani","doi":"10.1007/s11274-025-04298-7","DOIUrl":"10.1007/s11274-025-04298-7","url":null,"abstract":"<p><p>Natural products (NPs) of microbial origin are highly valued for their diverse bioactive properties. Among bacteria, Streptomyces stands out as a prolific source of NPs with applications in medicine and agriculture. Recent advances in metabolomics, and bioinformatics as well as the abundance of genomic data have revolutionized the study of NPs, enabling the rapid connection of biosynthetic pathways and metabolites. However, discovering novel compounds from large pools of genomes and strains is cumbersome. Metabolo-genomics approaches are promising strategies that can save time and resources at initial stages of the natural product discovery pipeline by rapidly linking molecules and their biosynthetic genes. Here, we present genomic characterization and metabolomic profiling of Streptomyces sp. KL110A, a strain isolated from the rainforest soils of Calakmul, Campeche in Mexico. Using genome mining tools and LC-MS/MS metabolomics, we identified and characterized known biosynthetic gene clusters (BGCs) and proposed a biosynthetic mechanism for the biosynthesis of the benz(a)anthraquinone tetrangulol. Our findings underscore the relevance of integrating genomic and metabolomic approaches in elucidating novel biosynthetic pathways, positively contributing to the field of natural product research.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"101"},"PeriodicalIF":4.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in Yarrowia lipolytica.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-10 DOI: 10.1007/s11274-025-04314-w
Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin
{"title":"Novel cell factory for the production of 24-epi-ergosterol, an un-natural semi-synthetic precursor for the production of brassinolide in Yarrowia lipolytica.","authors":"Yuanying Wang, Shuxian Liu, Zeyu Sheng, Yun Feng, Yinmiao Wang, Yiqi Jiang, Li Zhu, Mianbin Wu, Lirong Yang, Jianping Lin","doi":"10.1007/s11274-025-04314-w","DOIUrl":"10.1007/s11274-025-04314-w","url":null,"abstract":"<p><p>Brassinolide (BL) is the most bioactive plant growth regulator among Brassinosteroids (BRs), belonging to the sixth class of plant hormones. However, its low natural abundance limits large-scale agricultural applications. An unnatural sterol, 24-epi-ergosterol, was proposed as a semi-synthetic precursor for economic production of BL. Here, we constructed a synthetic pathway for 24-epi-ergosterol in Yarrowia lipolytica, which has abundant acetyl-CoA content and a hydrophobic intracellular environment. Initially, we introduced a mutant plant-derived Δ<sup>24(28)</sup> sterol reductase (Dwf1) into Y. lipolytica to enable 24-epi-ergosterol production. The production of 24-epi-ergosterol was subsequently enhanced by regulating sterol homeostasis, optimizing transcriptional regulators, and overexpressing key pathway genes. Next, the accumulation of 24-epi-ergosterol was further improved by increasing acetyl-CoA levels and adjusting lipid metabolism. Finally, the 24-epi-ergosterol production reached 1626.85 mg/L after optimizing the fermentation conditions and performing a fed-batch culture in a 2 L fermenter. This study represents the first successful de novo synthesis of 24-epi-ergosterol in Y. lipolytica, offering a novel approach for the industrial production of BL.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"98"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broad-spectrum antimicrobial properties of linalool: supporting its pharmacological use in chronic wound infections by pathogens within the ESKAPE group and polymicrobial biofilms.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-10 DOI: 10.1007/s11274-025-04317-7
Akshatha Rai, Yuvarajan Subramaniyan, Fida Fathima, Punchappady Devasya Rekha
{"title":"Broad-spectrum antimicrobial properties of linalool: supporting its pharmacological use in chronic wound infections by pathogens within the ESKAPE group and polymicrobial biofilms.","authors":"Akshatha Rai, Yuvarajan Subramaniyan, Fida Fathima, Punchappady Devasya Rekha","doi":"10.1007/s11274-025-04317-7","DOIUrl":"10.1007/s11274-025-04317-7","url":null,"abstract":"<p><p>Chronic wound infections are caused by biofilm forming opportunistic pathogenic bacteria. The persistence of infection, co-infecting pathogens and prolonged use of antibiotics promote antibiotic resistance hampering healing process due to increased inflammation. Hence, we tested the broad range antibacterial activity of linalool, a bioactive monoterpene commonly present in many essential oils having anti-inflammatory and antimicrobial activities to target different opportunistic pathogens commonly found in the chronic wound. We included some of the common pathogens such as Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus, to study the broad range antimicrobial efficacy of linalool. The in vitro effect of linalool on biofilm was quantified in pre-treatment, post-treatment, repetitive treatment, and polymicrobial biofilm scenarios. Time-kill and XTT (2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2 H-tetrazolium-5-carboxanilide) assays were performed to confirm the efficacy of linalool against wound infections, and these results were further validated using simulated wound exudates medium (WEM) which mimics the wound environment. The mechanism of bactericidal action was determined using assays for membrane integrity and oxidative stress. The results indicated the broad range antimicrobial activity of linalool with minimum inhibitory concentration (MIC) ranging from 2.5 to 5 µL/mL against E. coli, A. baumannii, E. faecalis, S. aureus, and K. pneumoniae, while for P. aeruginosa the MIC was 20 µL/mL. Linalool was most effective against E. coli, E. faecalis, K. pneumoniae, A. baumannii, and S. aureus, and could inhibit the growth and biofilm by more than 90% and 80%, respectively, at 5 µL/mL. The XTT assay confirmed the MIC results, showing a significant reduction in the metabolic activity of the pathogens (p < 0.001). In the simulated WEM similar response of the bacteria to linalool treatment was observed. At 5 to 20 µL/mL concentrations, linalool significantly inhibited the polymicrobial biofilm consisting of P. aeruginosa, A. baumannii, and S. aureus in two species combinations. The mechanism of bactericidal action was associated with the increased reactive oxygen species production and disruption in the membrane integrity leading to release of cellular content. The anti-inflammatory activity of linalool, assessed using the albumin denaturation method showed significant activity at the tested concentrations. In conclusion, the findings suggest the therapeutic potential of linalool in treating biofilm associated chronic wound infections due to its versatile broad spectrum activity.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"99"},"PeriodicalIF":4.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular profiling and bioinformatics approaches of biofilm formation in ionizing radiation-resistant Bacillus subtilis, isolated from geothermal spring in Ramsar, the North of Iran.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-08 DOI: 10.1007/s11274-025-04307-9
Dhuha Saeed Ali, Reza Vazifehmand, Maysoon Abulwahid Malik, Yaya Rukayadi, Son Radu, Mirsasan Mirpour, Mahmud Ab Rashid Nor-Khaizura
{"title":"Molecular profiling and bioinformatics approaches of biofilm formation in ionizing radiation-resistant Bacillus subtilis, isolated from geothermal spring in Ramsar, the North of Iran.","authors":"Dhuha Saeed Ali, Reza Vazifehmand, Maysoon Abulwahid Malik, Yaya Rukayadi, Son Radu, Mirsasan Mirpour, Mahmud Ab Rashid Nor-Khaizura","doi":"10.1007/s11274-025-04307-9","DOIUrl":"10.1007/s11274-025-04307-9","url":null,"abstract":"<p><p>Biofilm formation and its molecular signaling in bacteria resistant to ionizing radiation is not fully understood. This study aimed to investigate the genetic variations and gene expression of biofilm in an ionizing radiation-resistant Bacillus subtilis in Ramsar. Direct sequencing and quantitative PCR were applied to determine nucleotide variations and gene expression profiles of tapA-sipW-tasA, sinR, sinI, ccpA, epsA-O, spoOB, spoOA, slrA, slrR, ymcA and abrB genes. RNAsnp-RNAfold and Phyre2 and the Swiss Model webserver were used to analyze the structural mRNA and protein respectively. At the molecular level, the tapA-sipW-tasA operon was significantly overexpressed and the expression of ccpA and slrR was significantly downregulated. The thermodynamic and ensemble diversity ratio of the tapA (G>C) gene showed the largest changes in RNA secondary structure. In addition, the largest protein pocket belonged to tapA (148.6 A<sup>03</sup>) compared to the normal structure (121.1 A<sup>03</sup>). A non-radiation Bacillus subtilis was served as a control group. These results support the hypothesis that the induction of robust biofilm formation is through the (tapA) operon signal in ionizing radiation-resistant B. subtilis and that genetic variation in tapA (G>C) was the major gene associated with diversity in robust biofilm formation.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"97"},"PeriodicalIF":4.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143587335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress-tolerant Bacillus strains for enhancing tomato growth and biocontrol of Fusarium oxysporum under saline conditions: functional and genomic characterization.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-07 DOI: 10.1007/s11274-025-04308-8
María F Valencia-Marin, Salvador Chávez-Avila, Edgardo Sepúlveda, Carmen S Delgado-Ramírez, Jenny J Meza-Contreras, Ma Del Carmen Orozco-Mosqueda, Sergio De Los Santos-Villalobos, Olubukola Oluranti Babalola, Rufina Hernández-Martinez, Gustavo Santoyo
{"title":"Stress-tolerant Bacillus strains for enhancing tomato growth and biocontrol of Fusarium oxysporum under saline conditions: functional and genomic characterization.","authors":"María F Valencia-Marin, Salvador Chávez-Avila, Edgardo Sepúlveda, Carmen S Delgado-Ramírez, Jenny J Meza-Contreras, Ma Del Carmen Orozco-Mosqueda, Sergio De Los Santos-Villalobos, Olubukola Oluranti Babalola, Rufina Hernández-Martinez, Gustavo Santoyo","doi":"10.1007/s11274-025-04308-8","DOIUrl":"10.1007/s11274-025-04308-8","url":null,"abstract":"<p><p>Soil salinity is a major limiting factor for agricultural crops, which increases their susceptibility to pathogenic attacks. This is particularly relevant for tomato (Solanum lycopersicum), a salt-sensitive crop. Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, is a significant threat to tomato production in both greenhouse and field environments. This study evaluated the salinity tolerance, biocontrol, and plant growth-promoting properties of Bacillus velezensis AF12 and Bacillus halotolerans AF23, isolated from soil affected by underground fires and selected for their resistance to saline conditions (up to 1000 mM NaCl). In vitro assays confirmed that both strains produced siderophores, indole-3-acetic acid (IAA), and proteases and exhibited phosphate solubilization under saline stress (100-200 mM NaCl). AF23 exhibited synergistic interactions with AF12, and inoculation with either strain individually or in combination significantly improved the growth of the Bonny Best tomato cultivar under 200 mM saline stress, leading to increased shoot and root weight, enhanced chlorophyll content, and higher total biomass. The biocontrol potential of AF12 and AF23 was evaluated in tomato plants infected with F. oxysporum. Both strains, individually or combined, increased shoot and root weight, chlorophyll content, and total biomass under non-saline conditions, promoting growth and reducing infection rates under saline stress (100 mM NaCl). Genomic analysis revealed that both strains harbored genes related to salt stress tolerance, biocontrol, and plant growth promotion. In conclusion, Bacillus strains AF23 and AF12 demonstrated strong potential as bioinoculants for enhancing tomato growth and providing protection against F. oxysporum in saline-affected soils.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"96"},"PeriodicalIF":4.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosynthetic microorganisms as an alternative source of thrombolytic compounds: a systematic review.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-07 DOI: 10.1007/s11274-025-04303-z
Thalya Natasha da Silva Santos, Sara Cadete da Silva, Yanara Alessandra Santana Moura, Marllyn Marques da Silva, Ana Lúcia Figueiredo Porto, Raquel Pedrosa Bezerra
{"title":"Photosynthetic microorganisms as an alternative source of thrombolytic compounds: a systematic review.","authors":"Thalya Natasha da Silva Santos, Sara Cadete da Silva, Yanara Alessandra Santana Moura, Marllyn Marques da Silva, Ana Lúcia Figueiredo Porto, Raquel Pedrosa Bezerra","doi":"10.1007/s11274-025-04303-z","DOIUrl":"10.1007/s11274-025-04303-z","url":null,"abstract":"<p><p>Current conventional thrombolytic drugs have some limitations, including a short half-life, several adverse effects, low fibrin specificity, and high cost. Therefore, new thrombolytic sources have been widely investigated worldwide. In this sense, this work aims to evaluate the state of the art of the thrombolytic potential of different bioactive compounds produced from microalgae and cyanobacteria. Then, a systematic literature search was conducted using ScienceDirect, Medline (PubMed), Springer Link, Wiley Online Library, Scielo, MDPI, and BVS electronic databases to select original studies about thrombolytic agents obtained from microalgae and cyanobacteria. After the selection process, 20 studies met the inclusion criteria and were included in the final analysis. Most studies showed promising thrombolytic activity of polysaccharides or proteins produced by cyanobacteria and obtained through homogenization methods. Moreover, the majority of the studies used methods such as activated partial thromboplastin time, prothrombin time, thrombin time, or platelet aggregation tests as parameters to determine the thrombolytic activity. In conclusion, various bioactive compounds from microalgae and cyanobacteria showed high potential to act as alternative thrombolytic therapy, but some characteristics such as mechanism of action, cytotoxicity, immunogenicity and stability parameters need to be more exploited to make the application of these agents feasible in the future.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"95"},"PeriodicalIF":4.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a Na+-stimulated acidic hyaluronate lyase from Microbulbifer sp. ALW1 and the antioxidant activity of its hydrolysates.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-06 DOI: 10.1007/s11274-025-04315-9
Qianli Huang, Chunhua Zhu, Tao Hong, Hebin Li, Lijun Li, Mingjing Zheng, Zhipeng Li, Zedong Jiang, Hui Ni, Yanbing Zhu
{"title":"Characterization of a Na<sup>+</sup>-stimulated acidic hyaluronate lyase from Microbulbifer sp. ALW1 and the antioxidant activity of its hydrolysates.","authors":"Qianli Huang, Chunhua Zhu, Tao Hong, Hebin Li, Lijun Li, Mingjing Zheng, Zhipeng Li, Zedong Jiang, Hui Ni, Yanbing Zhu","doi":"10.1007/s11274-025-04315-9","DOIUrl":"10.1007/s11274-025-04315-9","url":null,"abstract":"<p><p>Hyaluronic acid (HA) is a natural polymer that can be degraded by hyaluronate lyase into oligomers with diverse biological activities. In this study, a novel hyaluronate lyase (named HCLase6) of polysaccharide lyase family 6 from Microbulbifer sp. ALW1 was cloned and characterized. Optimal temperature and pH for HCLase6 was determined to be 40 ℃ and 5.0, respectively. It displayed good stability at temperature up to 45 ℃ and in the pH range of 4.0-9.0. In addition, HCLase6 demonstrated good tolerance to detergents of Tween 20, Tween 80 and SDS, and was halophilic and halotolerant to Na<sup>+</sup>. Molecular dynamics simulations indicated that the presence of Na<sup>+</sup> increased the flexibility of the loop region adjacent to the active pocket of HCLase6, altered the surface hydrophobicity and electrostatic potential, and strengthened the motion correlation between amino acid residues. Notably, the enzymatic products of HA oligosaccharides (O-HA) produced by HCLase6 showed significantly enhanced free radical scavenging activities and iron reducing power. They also exhibited the antioxidant activity in human keratinocytes cells after exposure to PM SRM 1648a. This study provides the knowledge of the enzymatic properties of HCLase6 and a reference for its industrial application.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"94"},"PeriodicalIF":4.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutrient stress triggers sugar-mediated carotenoid production in algal-bacterial interactions.
IF 4 3区 生物学
World journal of microbiology & biotechnology Pub Date : 2025-03-04 DOI: 10.1007/s11274-025-04310-0
Abdalah Makaranga, Pannaga Pavan Jutur
{"title":"Nutrient stress triggers sugar-mediated carotenoid production in algal-bacterial interactions.","authors":"Abdalah Makaranga, Pannaga Pavan Jutur","doi":"10.1007/s11274-025-04310-0","DOIUrl":"10.1007/s11274-025-04310-0","url":null,"abstract":"<p><p>This study examined the impact of co-culturing Chlorella saccharophila (UTEX247) with Exiguobacterium sp. strain AMK1 on carotenoid production under nitrate-depleted conditions and 3% CO₂ supplementation. The co-culture significantly enhanced the productivity of lutein (238.31 µg.L⁻¹d⁻¹), zeaxanthin (220.72 µg.L⁻¹d⁻¹), violaxanthin (185.42 µg.L⁻¹d⁻¹), and antheraxanthin (84.07 µg.L⁻¹d⁻¹). Compared to nitrate-repleted mono-cultures, these carotenoids increased by 3.54-fold, 4.81-fold, 12.28-fold, and 9.34-fold, respectively. The violaxanthin cycle, activated by CO₂ supplementation, resulted in higher zeaxanthin production, verified through HPLC analysis. Metabolic profiling highlighted a notable rise in sucrose, an algal-specific metabolite, in the co-culture, reflecting enhanced carbon metabolism and carotenoid synthesis. Conversely, trehalose levels were significantly higher in the bacterial mono-culture (297.77 µg.mL⁻¹) than in the co-culture (88.84 µg.mL⁻¹), showing a 1.68-fold reduction as confirmed by GC-MS/MS. This suggests trehalose as a stress marker, with its reduction indicating mutualistic interactions between algal and bacterial. Overall, the co-culture strategy emerges as a promising approach to activate unexpressed pathways, generate novel metabolites, and enhance yields of valuable carotenoids like lutein and zeaxanthin. This aligns with the principles of a circular bioeconomy, leveraging bacterial biofertilizers, valorizing CO₂, and minimizing chemical dependency, thus offering potential for biorefinery applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 3","pages":"93"},"PeriodicalIF":4.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信