Robert Valeris-Chacin, Beatriz Garcia-Morante, Marina Sibila, Albert Canturri, Isaac Ballarà Rodriguez, Ignacio Bernal Orozco, Ramon Jordà Casadevall, Pedro Muñoz, Maria Pieters
{"title":"Scoring of swine lung images: a comparison between a computer vision system and human evaluators.","authors":"Robert Valeris-Chacin, Beatriz Garcia-Morante, Marina Sibila, Albert Canturri, Isaac Ballarà Rodriguez, Ignacio Bernal Orozco, Ramon Jordà Casadevall, Pedro Muñoz, Maria Pieters","doi":"10.1186/s13567-024-01432-5","DOIUrl":"10.1186/s13567-024-01432-5","url":null,"abstract":"<p><p>Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods. Therefore, this study aimed to compare CVPC scores provided by a computer vision system (CVS; AI DIAGNOS) from lung images obtained at slaughter, with scores assigned by human evaluators. In addition, intra- and inter-evaluator variability were assessed and compared to intra-CVS variability. A total of 1050 dorsal view images of swine lungs were analyzed. Total lung lesion score, lesion score per lung lobe, and percentage of affected lung area were employed as outcomes for the evaluation. The CVS showed moderate accuracy (62-71%) in discriminating between non-lesioned and lesioned lung lobes in all but the diaphragmatic lobes. A low multiclass classification accuracy at the lung lobe level (24-36%) was observed. A moderate to high inter-evaluator variability was noticed depending on the lung lobe, as shown by the intraclass correlation coefficient (ICC: 0.29-0.6). The intra-evaluator variability was low and similar among the different outcomes and lung lobes, although the observed ICC slightly differed among evaluators. In contrast, the CVS scoring was identical per lobe per image. The results of this study suggest that the CVS AI DIAGNOS could be used as an alternative to the manual scoring of CVPC during slaughter inspections due to its accuracy in binary classification and its perfect consistency in the scoring.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"9"},"PeriodicalIF":3.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR/Cas9-editing of PRNP in Alpine goats.","authors":"Aurélie Allais-Bonnet, Christophe Richard, Marjolaine André, Valérie Gelin, Marie-Christine Deloche, Aurore Lamadon, Gwendoline Morin, Béatrice Mandon-Pépin, Eugénie Canon, Dominique Thépot, Johann Laubier, Katayoun Moazami-Goudarzi, Ludivine Laffont, Olivier Dubois, Thierry Fassier, Patrice Congar, Olivier Lasserre, Tiphaine Aguirre-Lavin, Jean-Luc Vilotte, Eric Pailhoux","doi":"10.1186/s13567-024-01444-1","DOIUrl":"10.1186/s13567-024-01444-1","url":null,"abstract":"<p><p>Misfolding of the cellular PrP (PrP<sup>c</sup>) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP<sup>c</sup> induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP<sup>c</sup>-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the PRNP<sup>Ter</sup> mutation previously described in Norwegian goats. Genome editors were injected under the zona pellucida prior to the electroporation of 565 Alpine goat embryos/oocytes. A total of 122 two-cell-stage embryos were transferred to 46 hormonally synchronized recipient goats. Six of the goats remained pregnant and naturally gave birth to 10 offspring. Among the 10 newborns, eight founder animals carrying PRNP genome-edited alleles were obtained. Eight different mutated alleles were observed, including five inducing KO mutations. Three founders carried only genome-edited alleles and were phenotypically indistinguishable from their wild-type counterparts. Among them, one male carrying a one base pair insertion leading to a KO allele is currently used to rapidly extend a PRNP-KO line of Alpine goats for future characterization. In addition to KO alleles, a PRNP<sup>del6</sup> genetic variant has been identified in one-third of founder animals. This new variant will be tested for its potential properties with respect to prion disease. Future studies will also evaluate the effects of genetic background on other characters associated with PRNP KO, as previously described in the Norwegian breed or other species.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"11"},"PeriodicalIF":3.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eslam Mohamed, Ines Zarak, Nick Vereecke, Sebastiaan Theuns, Kathlyn Laval, Hans Nauwynck
{"title":"Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains.","authors":"Eslam Mohamed, Ines Zarak, Nick Vereecke, Sebastiaan Theuns, Kathlyn Laval, Hans Nauwynck","doi":"10.1186/s13567-024-01434-3","DOIUrl":"10.1186/s13567-024-01434-3","url":null,"abstract":"<p><p>Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century. The genomic sequences of five isolates associated with the fatal neurological outbreak in Valencia, Spain, in 2021 were analyzed and documented. The genome and replication kinetics of the Belgian EHM isolate 21P40, associated with the Valencia outbreak, and the well-characterized abortigenic strain 97P70 were compared. Both strains exhibited a nucleotide identity of 99.96%, with only seven genetic mutations in ORFs 13, 24, 30, 32, 40, 65, and 71. Isoleucine and asparagine at loci 291 and 207 of ORF30 (DNA polymerase) and ORF65 (ICP22), respectively, were unique to isolates from the Valencia outbreak. The replication kinetics of these two genetically closely related strains were determined in rabbit kidney (RK-13), equine respiratory, and vaginal mucosal explant cells, as well as equine blood monocytes (CD172a<sup>+</sup>). Both strains replicated equally well in RK-13 cells. The neuropathogenic isolate 21P40 exhibited a more extensive infection in respiratory explants and blood monocytes, as demonstrated by more plaques and single infected leukocytes, and a higher percentage of infected monocytes. In contrast, vaginal explants infected with the abortigenic strain 97P70 demonstrated more plaques and single infected leukocytes. In conclusion, 21P40 replicated significantly different compared to 97P70 but shared similarities with the Belgian well-studied neuropathogenic EHV-1 strain 03P37.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"12"},"PeriodicalIF":3.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advancements in the diverse roles of polymerase-associated proteins in the replication and pathogenesis of Newcastle disease virus.","authors":"Jinghang Zhou, Yuqi Duan, Menglan Liu, Jinyang Liu, Zenglei Hu, Zhiqiang Duan","doi":"10.1186/s13567-024-01429-0","DOIUrl":"10.1186/s13567-024-01429-0","url":null,"abstract":"<p><p>Newcastle disease virus (NDV) is a significant member of the Paramyxoviridae family, known for causing epidemics and substantial economic losses in the poultry industry worldwide. The NDV RNA genome primarily encodes six structural proteins (N, P, M, F, HN, and L) and two non-structural proteins (V and W). Among these, the polymerase-associated proteins (N, P, and L) and the viral RNA (vRNA) genome form the ribonucleoprotein complex, which plays a crucial role in the synthesis and transcription of NDV vRNA. In the last two decades, numerous studies have demonstrated that the polymerase-associated proteins are linked to the virulence, pathotype, and thermostability of NDV. Additionally, the interactions between these polymerase-associated proteins and host proteins are closely related to the NDV's replication and pathogenicity. Despite significant progress in understanding the unique and shared functions of NDV polymerase-associated proteins, research on these viral proteins' structure and function is less comprehensive than other NDV proteins, and the available information is often scattered. Therefore, this article systematically summarises and reviews the research progress made in understanding the structural features, virulence, pathotype, and thermostability correlation of NDV polymerase-associated proteins, as well as the critical roles of interactions between polymerase-associated proteins and host proteins in NDV replication and pathogenicity. This review aims to enhance our understanding of the complex functions of polymerase-associated proteins in NDV replication and pathogenesis and to contribute to the development of more effective vaccines and antiviral drugs against NDV challenges.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"8"},"PeriodicalIF":3.7,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Trichinella spiralis and its serine protease inhibitors on intestinal mucosal barrier function.","authors":"Ruibiao Wang, Yuheng Zhang, Zhixin Li, Jingbo Zhen, Qiankun Li, Qi Zhang, Yuqi Yang, Xueting Liu, Yixin Lu","doi":"10.1186/s13567-024-01446-z","DOIUrl":"10.1186/s13567-024-01446-z","url":null,"abstract":"<p><p>Trichinella spiralis (T. spiralis) is a highly pathogenic zoonotic nematode that poses significant public health risks and causes substantial economic losses. Understanding its invasion mechanisms is crucial. This study explored how the serine protease inhibitors (SPIs) secreted by T. spiralis affect the host's intestinal epithelial barrier. Furthermore, the effects of T. spiralis infection on the jejunal barrier function in mice were investigated. The histopathological analysis indicated significant damage to the jejunum, which peaked at day 7 post-infection (dpi). The results of RT-qPCR and western blotting revealed marked reductions in tight junction proteins (ZO-1, occludin, claudin-3), mucins (MUC-1, MUC-2), and anti-inflammatory cytokines (TGF-β, IL-10) from 1 to 15 dpi. There was also increased expression of Toll-like receptors (TLR-1, TLR-2, TLR-4) and pro-inflammatory cytokines (TNF-α, IL-1β). Recombinant SPIs (rKaSPI, rAdSPI) were purified, co-cultured with intestinal epithelial cells (IPECs), and used in mouse models. The protein expression changes in IPECs and mice were consistent with those in T. spiralis-infected tissues. Both SPIs caused the down-regulation of ZO-1, occludin, claudin-3, MUC-1, MUC-2, TGF-β, and IL-10 while up-regulating TLR-4 and pro-inflammatory cytokines. As a result, the intestinal barrier was disrupted, and inflammation was exacerbated. Notably, rAdSPI had a more pronounced effect. In summary, T. spiralis infection caused significant jejunal damage and disrupted the intestinal barrier. T. spiralis-secreted SPIs, especially serpin-type serine protease inhibitors (AdSPI), were pivotal in facilitating invasion by compromising the host's intestinal barrier and promoting inflammation. This study provides insights into T. spiralis invasion mechanisms and the potential targets for trichinellosis prevention and control.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"7"},"PeriodicalIF":3.7,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giorgia Di Muro, Carlotta Tessarolo, Giulia Cagnotti, Alessandra Favole, Sara Ferrini, Ugo Ala, Claudio Bellino, Giuliano Borriello, Marina Gallo, Giulia Iamone, Barbara Iulini, Marzia Pezzolato, Cristina Casalone, Maria Caramelli, Lorenzo Capucci, Patrizia Cavadini, Cristiano Corona, Antonio D'Angelo
{"title":"Neurofilament light chain (Nf-L) in cerebrospinal fluid and serum as a potential biomarker in the differential diagnosis of neurological diseases in cattle.","authors":"Giorgia Di Muro, Carlotta Tessarolo, Giulia Cagnotti, Alessandra Favole, Sara Ferrini, Ugo Ala, Claudio Bellino, Giuliano Borriello, Marina Gallo, Giulia Iamone, Barbara Iulini, Marzia Pezzolato, Cristina Casalone, Maria Caramelli, Lorenzo Capucci, Patrizia Cavadini, Cristiano Corona, Antonio D'Angelo","doi":"10.1186/s13567-024-01441-4","DOIUrl":"10.1186/s13567-024-01441-4","url":null,"abstract":"<p><p>Neurofilament light chain (Nf-L) is a biomarker for axonal damage in human neurology but is understudied in cattle. With this study we wanted to determine Nf-L stability at two different storage temperatures and Nf-L levels in healthy cattle and the relationship with age, evaluate whether Nf-L holds diagnostic potential for neurological disorders, and whether an association exists between Nf-L in serum and in cerebrospinal fluid (CSF). To do this, we measured Nf-L levels in CSF and serum samples from 49 healthy and 75 sick cattle. Storage at -80 °C or -20 °C had no impact on Nf-L concentration. Physiological median Nf-L levels were 6.3 pg/mL (serum) and 414 pg/mL (CSF) in calves and 5.5 pg/mL (serum) and 828 pg/mL (CSF) in adult cattle. There was no association between Nf-L levels in CSF and calf age (r<sup>2</sup> 0.07, p = 0.13), while a weak association was found for Nf-L in serum (r<sup>2</sup> 0.26, p = 0.01), and a significant association in adult cattle (CSF, r<sup>2</sup> 0.69, p = 0.0001; serum, r<sup>2</sup> 0.68, p = 0.0003). CSF Nf-L levels were higher in samples from animals with degenerative (median Nf-L 49971 pg/mL) and infectious central nervous system (CNS) disorders (median Nf-L, age < 2 months 8863 pg/mL; age 2-12 months 17474 pg/mL; age 1-6 years 3546 pg/mL), CNS anomalies and metabolic/toxic disorders. There was a significant association between CSF Nf-L and serum Nf-L in cattle with neurological disorders (r<sup>2</sup> 0.2, p = 0.009). Taken together, these findings suggest the potential of Nf-L as a diagnostic tool in cattle neurology.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"6"},"PeriodicalIF":3.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nam Phuong Le, Bac Tran Le, Van Phan Le, Jung-Eun Park
{"title":"Molecular characterization of swine acute diarrhea syndrome coronavirus detected in Vietnamese pigs.","authors":"Nam Phuong Le, Bac Tran Le, Van Phan Le, Jung-Eun Park","doi":"10.1186/s13567-024-01445-0","DOIUrl":"10.1186/s13567-024-01445-0","url":null,"abstract":"<p><p>Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine coronavirus that was recently identified in southern China in 2017. At present, there is a lack of nationwide epidemiological investigations of the newly emerged SADS-CoV. Because Vietnam is geographically adjacent to southern China, many diseases have spread from China to Vietnam. To assess SADS-CoV transmission to Vietnam, we conducted a retrospective study to detect SADS-CoV in samples collected from pig farms in northern Vietnam. Among the 69 fecal samples tested, 5 were positive for SADS-CoV. The spike gene sequence showed high genetic homology with strains circulating in China. Our study is the first to show that SADS-CoV has spread from China to Vietnam and highlights the need for global epidemiological investigations of SADS-CoV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"4"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Zhao, Xiao Cong, Xiaobo Huang, Yi Zheng, Qin Zhao, Yiping Wen, Rui Wu, Senyan Du, Sanjie Cao, Feng Cong, Yiping Wang
{"title":"Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.","authors":"Fei Zhao, Xiao Cong, Xiaobo Huang, Yi Zheng, Qin Zhao, Yiping Wen, Rui Wu, Senyan Du, Sanjie Cao, Feng Cong, Yiping Wang","doi":"10.1186/s13567-024-01436-1","DOIUrl":"10.1186/s13567-024-01436-1","url":null,"abstract":"<p><p>Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity. To date, there are no vaccines and drugs approved to prevent or treat SADS-CoV infection. Understanding of the mutual relationship between SADS-CoV infection and host immunity is crucial for the development of novel vaccines and drugs against SADS-CoV. Here, we review recent advancements in our understanding of the interplay between SADS-CoV infection and the host intrinsic and innate immunity. The extensive and in-depth investigation on their interactive relationship will contribute to the identification of new targets for developing intervention strategies to control SADS-CoV infection.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"5"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DPV pUL15 possesses a potential NLS, which is important for the location of the terminase complex and for viral proliferation and genome cleavage.","authors":"Qiao Yang, Yaya Feng, Lizhen Liu, Linlin Yang, Mingshu Wang, Ying Wu, Bin Tian, Xumin Ou, Renyong Jia, Dekang Zhu, Shun Chen, Mafeng Liu, Xinxin Zhao, Shaqiu Zhang, Juan Huang, Di Sun, Yu He, Zhen Wu, Ling Zhang, Yanling Yu, Anchun Cheng","doi":"10.1186/s13567-024-01420-9","DOIUrl":"https://doi.org/10.1186/s13567-024-01420-9","url":null,"abstract":"<p><p>In herpesvirus, the terminase subunit pUL15 is involved in cleavage of the viral genome concatemers in the nucleus. Previous studies have shown that herpes simplex virus 1 (HSV-1) pUL15 can enter the nucleus without other viral proteins and help other terminase subunits enter the nucleus. However, this study revealed that duck plague virus (DPV) pUL15 cannot localize independently to the nucleus and can only be localized in the nucleus in the presence of pUL28 and pUL33. However, the data suggested the presence of a potential nuclear localization signal (NLS) in DPV pUL15, which is important for the localization of the terminase subunits. Subsequently, several single-point mutants were constructed to identify the vital amino acids within the NLS. The conserved amino acids K187, R188, and K190 are critical for the nuclear localization of pUL15, pUL28, and pUL33 but not for their interaction. Furthermore, corresponding recombinant viruses were constructed. The results revealed that the mutations rUL15K187Q, rUL15K188Q and rUL15K190Q had an obvious influence on concatemeric genome cleavage, but only K190Q significantly affected the production of progeny virions. These findings indicate that the NLS is important for the functions of DPV pUL15. Overall, a potential NLS and the key amino acids in DPV pUL15 were identified. Mutations in K187, K188 and K190 affected the cleavage of the concatemeric genome, but only mutations in K190 had an obvious effect on viral proliferation.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"3"},"PeriodicalIF":3.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ram Prasad Aganja, Jun Kwon, Amal Senevirathne, John Hwa Lee
{"title":"Deletion of pagL and arnT genes involved in LPS structure and charge modulation in the Salmonella genome confer reduced endotoxicity and retained efficient protection against wild-type Salmonella Gallinarum challenge in chicken.","authors":"Ram Prasad Aganja, Jun Kwon, Amal Senevirathne, John Hwa Lee","doi":"10.1186/s13567-024-01413-8","DOIUrl":"https://doi.org/10.1186/s13567-024-01413-8","url":null,"abstract":"<p><p>Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity. This study aims to develop safer and more effective SG vaccine strains through targeted genetic modifications, focusing on genes involved in lipopolysaccharide (LPS) biosynthesis and modification. We evaluated two novel mutant SG strains, JOL3015 and JOL3016, carrying in-frame deletions in ΔlonΔrfaLΔarnT and ΔlonΔrfaLΔpagL, respectively. Intramuscular immunisation of 4-week-old young birds with JOL3015 and JOL3016 strains showed minimal impact on their growth. However, the immunisation significantly increased antigen-specific IgY, sIgA secretion, and CD4<sup>+</sup> and CD8<sup>+</sup> T-cell responses while inducing lower pro-inflammatory cytokine levels than SG9R. Histopathological evaluations revealed substantial protection in the immunised birds, with minimal tissue damage and inflammatory responses, thus reducing the in vivo bacterial burden. Furthermore, none of the immunised birds died. This outcome highlights the significant safety and protection the selected genetic modifications conferred. Our results indicate that JOL3016 provided comparable protective outcomes on par with SG9R, yet with significantly lower endotoxicity responses during the lethal challenge with SG WT JOL422. The novel detoxified SG strains, particularly JOL3016, offer a promising alternative to existing vaccines for FT. They provide effective protection with minimal impact on poultry growth, thereby minimising the risks associated with reversion and endotoxicity. The study highlights the potential of genetically engineered vaccine strains in improving poultry health and productivity, emphasising the importance of continued research.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"2"},"PeriodicalIF":3.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}