Veterinary Research最新文献

筛选
英文 中文
HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen. 寄生褐飞虱的 HbpA 可通过激活 MAPK 和 NF-κB 信号通路诱导 3D4/21 细胞产生炎症反应,并在用作免疫原时保护小鼠免受寄生褐飞虱的感染。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-29 DOI: 10.1186/s13567-024-01344-4
Zhen Yang, Yiwen Zhang, Qin Zhao, Senyan Du, Xiaobo Huang, Rui Wu, Qigui Yan, Xinfeng Han, Yiping Wen, San-Jie Cao
{"title":"HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen.","authors":"Zhen Yang, Yiwen Zhang, Qin Zhao, Senyan Du, Xiaobo Huang, Rui Wu, Qigui Yan, Xinfeng Han, Yiping Wen, San-Jie Cao","doi":"10.1186/s13567-024-01344-4","DOIUrl":"10.1186/s13567-024-01344-4","url":null,"abstract":"<p><p>Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baicalin and probenecid protect against Glaesserella parasuis challenge in a piglet model. 黄芩苷和丙磺舒可在仔猪模型中防止寄生璃泽氏菌挑战。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-29 DOI: 10.1186/s13567-024-01352-4
Shulin Fu, Siyu Liu, Jingyang Li, Qiaoli Dong, Yunjian Fu, Ronghui Luo, Yamin Sun, Xinyue Tian, Wei Liu, Bingbing Zong, Chun Ye, Qirong Lu, Yinsheng Qiu, Ling Guo
{"title":"Baicalin and probenecid protect against Glaesserella parasuis challenge in a piglet model.","authors":"Shulin Fu, Siyu Liu, Jingyang Li, Qiaoli Dong, Yunjian Fu, Ronghui Luo, Yamin Sun, Xinyue Tian, Wei Liu, Bingbing Zong, Chun Ye, Qirong Lu, Yinsheng Qiu, Ling Guo","doi":"10.1186/s13567-024-01352-4","DOIUrl":"10.1186/s13567-024-01352-4","url":null,"abstract":"<p><p>Glaesserella parasuis (G. parasuis) induces vascular damage and systemic inflammation. However, the mechanism by which it causes vascular damage is currently unclear. Baicalin has important anti-inflammatory, antibacterial and immunomodulatory functions. In this study, we explored the ability of baicalin and probenecid to protect against G. parasuis challenge in a piglet model. Sixty piglets were randomly divided into a control group; an infection group; a probenecid group; and 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups. The probenecid group and the 25 mg/kg, 50 mg/kg and 100 mg/kg baicalin groups were injected intramuscularly with 20 mg/kg body weight (BW) probenecid and 25 mg/kg BW, 50 mg/kg BW and 100 mg/kg BW baicalin, respectively. All piglets except those from the control group were injected intraperitoneally with 1 × 10<sup>8</sup> CFU of G. parasuis. The control group was injected intraperitoneally with TSB. The results showed baicalin and probenecid protected piglets against G. parasuis challenge, improved body weight and decreased temperature changes in piglets. Baicalin and probenecid attenuated IL-1β, IL-10, IL-18, TNF-α and IFN-γ mRNA levels in the blood for 48 h, inhibited the production of the nucleosides ATP, ADP, AMP and UMP from 24 to 72 h, reduced Panx-1/P2Y6/P2X7 expression, weakened NF-kB, AP-1, NLRP3/Caspase-1 and ROCK/MLCK/MLC signalling activation, and upregulated VE-cadherin expression in the blood vessels of piglets challenged with G. parasuis. Baicalin and probenecid alleviated pathological tissue damage in piglets induced by G. parasuis. Our results might provide a promising strategy to control and treat G. parasuis infection in the clinical setting.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant porcine interferon delta 8 inhibits swine acute diarrhoea syndrome coronavirus infection in vitro and in vivo. 重组猪δ8干扰素抑制猪急性腹泻综合征冠状病毒的体外和体内感染。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-24 DOI: 10.1186/s13567-024-01346-2
Teng Zhang, Jiale Yao, Zhuan Yang, Jucai Wang, Kankan Yang, Lunguang Yao
{"title":"Recombinant porcine interferon delta 8 inhibits swine acute diarrhoea syndrome coronavirus infection in vitro and in vivo.","authors":"Teng Zhang, Jiale Yao, Zhuan Yang, Jucai Wang, Kankan Yang, Lunguang Yao","doi":"10.1186/s13567-024-01346-2","DOIUrl":"10.1186/s13567-024-01346-2","url":null,"abstract":"<p><p>Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which originates from zoonotic transmission of bat coronaviruses in the HKU2 lineage, causes severe illness in pigs and carries a high risk of spreading to humans. At present, there are no licenced therapeutics for the treatment of SADS-CoV. In this study, we examined the effectiveness of recombinant porcine interferon delta 8 (IFN-δ8) against SADS-CoV both in vitro and in vivo. In vitro experiments showed that IFN-δ8 inhibited SADS-CoV proliferation in a concentration-dependent manner, with complete inhibition occurring at a concentration of 5 μg/mL. In vivo experiments demonstrated that two 50 μg/kg doses of IFN-δ8 injected intraperitoneally protected piglets against lethal challenge, blocked viral shedding, attenuated intestinal damage, and decreased the viral load in the jejunum and ileum. Further findings suggested that IFN-δ8 inhibited SADS-CoV infection by increasing the expression of IFN-stimulated genes. These results indicate that IFN-δ8 shows promise as a biological macromolecule drug against SADS-CoV infection.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomal ssc-miR-1343 targets FAM131C to regulate porcine epidemic diarrhea virus infection in pigs 外泌体ssc-miR-1343以FAM131C为靶调节猪流行性腹泻病毒感染
IF 4.4 1区 农林科学
Veterinary Research Pub Date : 2024-07-22 DOI: 10.1186/s13567-024-01345-3
Weiyun Qin, Jing Jiang, Jiayun Wu, Yunxiao Xie, Zhengchang Wu, Mingan Sun, Wenbin Bao
{"title":"Exosomal ssc-miR-1343 targets FAM131C to regulate porcine epidemic diarrhea virus infection in pigs","authors":"Weiyun Qin, Jing Jiang, Jiayun Wu, Yunxiao Xie, Zhengchang Wu, Mingan Sun, Wenbin Bao","doi":"10.1186/s13567-024-01345-3","DOIUrl":"https://doi.org/10.1186/s13567-024-01345-3","url":null,"abstract":"The porcine epidemic diarrhea virus (PEDV) causes diarrhea in piglets, thereby causing very significant economic losses for the global swine industry. In previous studies, it has been confirmed that microRNAs (miRNAs) play an important role in the infection caused by PEDV. However, the precise molecular mechanism of miRNAs in the regulation of PEDV infection is still not fully understood. In the present study, we utilized miRNA-seq analysis to identify ssc-miR-1343 with differential expression between PEDV-infected and normal piglets. The expression of ssc-miR-1343 was detected in isolated exosomes, and it was found to be significantly higher than that in the controls following PEDV infection. The ssc-miR-1343 mimic was found to decrease PEDV replication, whereas the ssc-miR-1343 inhibitor was observed to increase PEDV replication, and ssc-miR-1343 was delivered by exosomes during PEDV infection. Mechanistically, ssc-miR-1343 binds to the 3′UTR region of FAM131C, down-regulating its expression, and FAM131C has been shown to enhance PEDV replication through simultaneously suppressing pathways associated with innate immunity. The ssc-miR-1343/FAM131C axis was found to upregulate the host immune response against PEDV infection. In conclusion, our findings indicate that the transport of ssc-miR-1343 in exosomes is involved in PEDV infection. This discovery presents a new potential target for the development of drugs to treat PEDV.","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survey of severe acute respiratory syndrome coronavirus 2 in captive and free-ranging wildlife from Spain. 西班牙圈养和放养野生动物严重急性呼吸系统综合征冠状病毒 2 调查。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-19 DOI: 10.1186/s13567-024-01348-0
Leira Fernández-Bastit, David Cano-Terriza, Javier Caballero-Gómez, Adrián Beato-Benítez, Antonio Fernández, Daniel García-Párraga, Mariano Domingo, Cecilia Sierra, Rocío Canales, Santiago Borragan, Manuel de la Riva-Fraga, Rafael Molina-López, Óscar Cabezón, Maria Puig-Ribas, Johan Espunyes, Daniel B Vázquez-Calero, Júlia Vergara-Alert, Ignacio García-Bocanegra, Joaquim Segalés
{"title":"Survey of severe acute respiratory syndrome coronavirus 2 in captive and free-ranging wildlife from Spain.","authors":"Leira Fernández-Bastit, David Cano-Terriza, Javier Caballero-Gómez, Adrián Beato-Benítez, Antonio Fernández, Daniel García-Párraga, Mariano Domingo, Cecilia Sierra, Rocío Canales, Santiago Borragan, Manuel de la Riva-Fraga, Rafael Molina-López, Óscar Cabezón, Maria Puig-Ribas, Johan Espunyes, Daniel B Vázquez-Calero, Júlia Vergara-Alert, Ignacio García-Bocanegra, Joaquim Segalés","doi":"10.1186/s13567-024-01348-0","DOIUrl":"10.1186/s13567-024-01348-0","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic. In total, 8/137 animals were positive for SARS-CoV-2 antibodies against the receptor binding domain and/or viral nucleoprotein according to independent ELISAs. However, only one ELISA-positive sample of a captive bottlenose dolphin (Tursiops truncatus) tested positive for SARS-CoV-2 neutralizing antibodies with a low titre (SNT<sub>50</sub> 38.15) according to a virus neutralization test. Cetaceans are expected to have a high risk of infection with SARS-CoV-2 according to early predictive studies due to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals analysed for SARS-CoV-2 RNA using RT-qPCR, none tested positive. Our results reinforce the importance of considering cetaceans at risk for SARS-CoV-2 infection and support taking preventive biosecurity measures when interacting with them, especially in the presence of individuals with suspected or confirmed COVID-19. Although most animals in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and potentially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fish Iridoviridae: infection, vaccination and immune response. 鱼类虹彩病毒科:感染、疫苗接种和免疫反应。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-15 DOI: 10.1186/s13567-024-01347-1
Rocío Leiva-Rebollo, Alejandro M Labella, Juan Gémez-Mata, Dolores Castro, Juan J Borrego
{"title":"Fish Iridoviridae: infection, vaccination and immune response.","authors":"Rocío Leiva-Rebollo, Alejandro M Labella, Juan Gémez-Mata, Dolores Castro, Juan J Borrego","doi":"10.1186/s13567-024-01347-1","DOIUrl":"10.1186/s13567-024-01347-1","url":null,"abstract":"<p><p>Each year, due to climate change, an increasing number of new pathogens are being discovered and studied, leading to an increase in the number of known diseases affecting various fish species in different regions of the world. Viruses from the family Iridoviridae, which consist of the genera Megalocytivirus, Lymphocystivirus, and Ranavirus, cause epizootic outbreaks in farmed and wild, marine, and freshwater fish species (including ornamental fish). Diseases caused by fish viruses of the family Iridoviridae have a significant economic impact, especially in the aquaculture sector. Consequently, vaccines have been developed in recent decades, and their administration methods have improved. To date, various types of vaccines are available to control and prevent Iridoviridae infections in fish populations. Notably, two vaccines, specifically targeting Red Sea bream iridoviral disease and iridoviruses (formalin-killed vaccine and AQUAVAC<sup>®</sup> IridoV, respectively), are commercially available. In addition to exploring these themes, this review examines the immune responses in fish following viral infections or vaccination procedures. In general, the evasion mechanisms observed in iridovirus infections are characterised by a systemic absence of inflammatory responses and a reduction in the expression of genes associated with the adaptive immune response. Finally, this review also explores prophylactic procedure trends in fish vaccination strategies, focusing on future advances in the field.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative evaluation of disease dynamics in wild boar and domestic pigs experimentally inoculated intranasally with the European highly virulent African swine fever virus genotype II strain "Armenia 2007". 野猪和家猪实验性鼻内接种欧洲高致病性非洲猪瘟病毒基因 II 型毒株 "亚美尼亚 2007 "后的疾病动态比较评估。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-15 DOI: 10.1186/s13567-024-01343-5
Pedro J Sánchez-Cordón, Fabian Z X Lean, Carrie Batten, Falko Steinbach, Aleksija Neimanis, Marie-Frédérique Le Potier, Emil Wikström-Lassa, Felicity Wynne, Rebecca Strong, Stephen McCleary, Helen Crooke, Dolores Gavier-Widén, Alejandro Núñez
{"title":"Comparative evaluation of disease dynamics in wild boar and domestic pigs experimentally inoculated intranasally with the European highly virulent African swine fever virus genotype II strain \"Armenia 2007\".","authors":"Pedro J Sánchez-Cordón, Fabian Z X Lean, Carrie Batten, Falko Steinbach, Aleksija Neimanis, Marie-Frédérique Le Potier, Emil Wikström-Lassa, Felicity Wynne, Rebecca Strong, Stephen McCleary, Helen Crooke, Dolores Gavier-Widén, Alejandro Núñez","doi":"10.1186/s13567-024-01343-5","DOIUrl":"10.1186/s13567-024-01343-5","url":null,"abstract":"<p><p>Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species transmission and histopathological variation in specific-pathogen-free minipigs infected with different hepatitis E virus strains. 感染不同戊型肝炎病毒株的无特异性病原体小猪的跨种传播和组织病理学变异。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-09 DOI: 10.1186/s13567-024-01337-3
Soontag Jung, Daseul Yeo, Dong-Joo Seo, In-Soo Choi, Changsun Choi
{"title":"Cross-species transmission and histopathological variation in specific-pathogen-free minipigs infected with different hepatitis E virus strains.","authors":"Soontag Jung, Daseul Yeo, Dong-Joo Seo, In-Soo Choi, Changsun Choi","doi":"10.1186/s13567-024-01337-3","DOIUrl":"10.1186/s13567-024-01337-3","url":null,"abstract":"<p><p>Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Pigs are the natural host of HEV genotype 3 and the main reservoir of HEV. As the host range of HEV genotype 3 expands, the possibility that HEV from various species can be transmitted to humans via pigs is increasing. We investigated the potential cross-species transmission of HEV by infecting minipigs with swine HEV (swHEV), rabbit HEV (rbHEV), and human HEV (huHEV) and examining their histopathological characteristics and distribution in various organs. Fifteen specific-pathogen-free Yucatan minipigs were infected with swHEV, rbHEV, huHEV, or a mock control. In the present study, we analysed faecal shedding, viremia, and serological parameters over a seven-week period. Our results indicated that swHEV exhibited more robust shedding and viremia than non-swHEVs. Only swHEV affected the serological parameters, suggesting strain-specific differences. Histopathological examination revealed distinct patterns in the liver, pancreas, intestine, and lymphoid tissues after infection with each HEV strain. Notably, all three HEVs induced histopathological changes in the pancreas, supporting the association of HEVs with acute pancreatitis. Our results also identified skeletal muscle as a site of HEV antigen presence, suggesting a potential link to myositis. In conclusion, this study provides valuable insights into the infection dynamics of different HEV strains in minipigs, emphasizing the strain-specific variations in virological, serological, and histological parameters. The observed differences in infection kinetics and tissue tropism will contribute to our understanding of HEV pathogenesis and the potential for cross-species transmission.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salmonella enteritidis acquires phage resistance through a point mutation in rfbD but loses some of its environmental adaptability. 肠炎沙门氏菌通过 rfbD 的点突变获得了噬菌体抗性,但却丧失了部分环境适应能力。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-05 DOI: 10.1186/s13567-024-01341-7
Yukun Zeng, Ping Li, Shenglong Liu, Mangmang Shen, Yuqing Liu, Xin Zhou
{"title":"Salmonella enteritidis acquires phage resistance through a point mutation in rfbD but loses some of its environmental adaptability.","authors":"Yukun Zeng, Ping Li, Shenglong Liu, Mangmang Shen, Yuqing Liu, Xin Zhou","doi":"10.1186/s13567-024-01341-7","DOIUrl":"10.1186/s13567-024-01341-7","url":null,"abstract":"<p><p>Phage therapy holds promise as an alternative to antibiotics for combating multidrug-resistant bacteria. However, host bacteria can quickly produce progeny that are resistant to phage infection. In this study, we investigated the mechanisms of bacterial resistance to phage infection. We found that Rsm1, a mutant strain of Salmonella enteritidis (S. enteritidis) sm140, exhibited resistance to phage Psm140, which was originally capable of lysing its host at sm140. Whole genome sequencing analysis revealed a single nucleotide mutation at position 520 (C → T) in the rfbD gene of Rsm1, resulting in broken lipopolysaccharides (LPS), which is caused by the replacement of CAG coding glutamine with a stop codon TAG. The knockout of rfbD in the sm140ΔrfbD strain caused a subsequent loss of sensitivity toward phages. Furthermore, the reintroduction of rfbD in Rsm1 restored phage sensitivity. Moreover, polymerase chain reaction (PCR) amplification of rfbD in 25 resistant strains revealed a high percentage mutation rate of 64% within the rfbD locus. We assessed the fitness of four bacteria strains and found that the acquisition of phage resistance resulted in slower bacterial growth, faster sedimentation velocity, and increased environmental sensitivity (pH, temperature, and antibiotic sensitivity). In short, bacteria mutants lose some of their abilities while gaining resistance to phage infection, which may be a general survival strategy of bacteria against phages. This study is the first to report phage resistance caused by rfbD mutation, providing a new perspective for the research on phage therapy and drug-resistant mechanisms.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice. 氨基酸突变 PB1-V719M 和 PA-N444D 与 PB2-627K 共同导致了 H7N9 在小鼠中的致病性。
IF 3.7 1区 农林科学
Veterinary Research Pub Date : 2024-07-05 DOI: 10.1186/s13567-024-01342-6
Xiaoquan Wang, Xin-En Tang, Huafen Zheng, Ruyi Gao, Xiaolong Lu, Wenhao Yang, Le Zhou, Yu Chen, Min Gu, Jiao Hu, Xiaowen Liu, Shunlin Hu, Kaituo Liu, Xiufan Liu
{"title":"Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice.","authors":"Xiaoquan Wang, Xin-En Tang, Huafen Zheng, Ruyi Gao, Xiaolong Lu, Wenhao Yang, Le Zhou, Yu Chen, Min Gu, Jiao Hu, Xiaowen Liu, Shunlin Hu, Kaituo Liu, Xiufan Liu","doi":"10.1186/s13567-024-01342-6","DOIUrl":"10.1186/s13567-024-01342-6","url":null,"abstract":"<p><p>H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信