Water Science and Technology最新文献

筛选
英文 中文
Flocculation of Micractinium reisseri for successful harvesting and potential use. 成功收获和潜在利用的微锕絮凝剂。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-11-01 Epub Date: 2024-11-15 DOI: 10.2166/wst.2024.374
Sudha Sahay, Brigita Jain, Dharmisha Solanki, Shailesh Dave, Antony Suresh
{"title":"Flocculation of <i>Micractinium reisseri</i> for successful harvesting and potential use.","authors":"Sudha Sahay, Brigita Jain, Dharmisha Solanki, Shailesh Dave, Antony Suresh","doi":"10.2166/wst.2024.374","DOIUrl":"https://doi.org/10.2166/wst.2024.374","url":null,"abstract":"<p><p>This study includes <i>Micractinium reisseri</i> cultivation in artificial saline medium (ASM). With the aim of harvesting the bulk <i>M. reisseri</i> biomass, an experiment was set up at a bench scale to evaluate the best flocculation technique with the least compromising biomass and lipid loss. The flocculation efficiencies for the <i>M. reisseri</i> biomass have been studied using the auto-, bio-, and chemical-flocculation methods. Different concentrations of chitosan for the biological method and alum for the chemical method were added in <i>M. reisseri</i> culture growing in the liquid ASM. The optimal concentration with the highest biomass and oil collection was determined for each method. In the biological method, the highest (96.44%) and lowest (67.88%) flocculation efficiencies were observed by adding 15 and 2 mg of chitosan, respectively, and in the chemical method, the highest (97.2%) and lowest (35.4%) flocculation efficiencies were observed by adding 150 and 50 mg of alum, respectively. The auto-flocculation method shows the highest efficiency (97.8%) among all the tests. The oil yield from the three highest biomasses was 2.60, 1.51, and 1.08% in the auto-, bio-, and chemical-flocculation methods, respectively. The time taken for auto-, bio-, and chemical-flocculation was 48, 4, and 1 h, respectively.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2934-2946"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decision support tools for water reuse: a systematic review. 水再利用的决策支持工具:系统回顾。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-11-01 Epub Date: 2024-11-09 DOI: 10.2166/wst.2024.361
Vanda Sampaio, Ana Silvia Pereira Santos, Maria Manuela Lima
{"title":"Decision support tools for water reuse: a systematic review.","authors":"Vanda Sampaio, Ana Silvia Pereira Santos, Maria Manuela Lima","doi":"10.2166/wst.2024.361","DOIUrl":"10.2166/wst.2024.361","url":null,"abstract":"<p><p>This article provides a comprehensive review of decision support tools for water reuse (DST4WR), focusing on microbiological risk assessment (MRA), life cycle analysis (LCA), life cycle cost (LCC), and multi-criteria decision analysis (MCDA). A systematic review of 35 articles published between 2020 and 2024, plus one from 2019, was conducted. The studies were categorised based on the DST4WR applied, with each tool discussed individually. MRA tools assess public health risks in different case studies. LCA identifies key environmental indicators, and its integration with LCC facilitates comprehensive cost analysis. MCDA, applied in various case studies, uses criteria like environmental, social, economic, technical, public health, and functional aspects. Integrating DST4WR tools identifies synergies and trade-offs between criteria, aiding informed decision-making. Combining MRA, LCA/LCC, and MCDA is especially beneficial, as each tool provides a distinct perspective. Using these tools together offers a holistic view of water reuse management, ensuring that all relevant factors are balanced. This approach enhances decision-making and builds stakeholder confidence and acceptance by transparently addressing public health, environmental, economic, and social concerns.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2713-2733"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of copper and lead on the sorption and desorption behaviors of benzene onto humic acids and black carbons. 铜和铅对苯在腐植酸和黑碳上吸附和解吸行为的影响。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-11-01 Epub Date: 2024-11-12 DOI: 10.2166/wst.2024.372
Zhi Tang, Sen Yang, Yilian Li, Juan Du, Yangfu Xiong, Shengbo Fu
{"title":"Effects of copper and lead on the sorption and desorption behaviors of benzene onto humic acids and black carbons.","authors":"Zhi Tang, Sen Yang, Yilian Li, Juan Du, Yangfu Xiong, Shengbo Fu","doi":"10.2166/wst.2024.372","DOIUrl":"https://doi.org/10.2166/wst.2024.372","url":null,"abstract":"<p><p>Due to rapid urbanization and industrialization, combined pollution caused by BTEX (benzene, toluene, ethylbenzene, and xylene) and heavy metals has become ubiquitous in soils, which would pose serious health risks to humans. However, the effects of heavy metals on the sorption and desorption behaviors of BTEX have not been fully elucidated. In this study, the effects of Cu<sup>2+</sup> and Pb<sup>2+</sup> ions on the sorption and desorption of benzene onto humic acids and black carbons were investigated. The results showed that Cu<sup>2+</sup> and Pb<sup>2+</sup> ions significantly reduced the sorption capacity, slowed down the sorption rate, and made the desorption less hysteretic of benzene on both humic acids and black carbons. Furthermore, the inhibitory effects by Pb<sup>2+</sup> were significantly stronger than those of Cu<sup>2+</sup>. By combining the results of Fourier transform infrared spectroscopy and the site energy distribution model, it can be speculated that the hydration shells of Cu<sup>2+</sup> and Pb<sup>2+</sup> ions partially cover the surface of humic acids and black carbons, blocking their micropores and shielding sorption sites, consequently inhibiting the sorption of benzene. This study highlights that coexisting metal cations can significantly influence the fate of BTEX in soils.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2947-2960"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative life cycle assessment of on-site sanitation systems using lagoons or drying beds for fecal sludge treatment in low-income tropical countries. 在低收入热带国家使用泻湖或干燥床进行粪便污泥处理的现场卫生系统的比较生命周期评估。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-11-01 Epub Date: 2024-11-13 DOI: 10.2166/wst.2024.377
Davidson Jean-Baptiste, Frédéric Monette
{"title":"Comparative life cycle assessment of on-site sanitation systems using lagoons or drying beds for fecal sludge treatment in low-income tropical countries.","authors":"Davidson Jean-Baptiste, Frédéric Monette","doi":"10.2166/wst.2024.377","DOIUrl":"10.2166/wst.2024.377","url":null,"abstract":"<p><p>Environmental challenges in low-income countries, such as Haiti, persist due to inadequate sanitation infrastructure. This study assesses the environmental impacts of nine on-site sanitation systems to identify those with the least environmental impacts and explore improvement options. Nine scenarios were developed, each representing different systems for managing 1 ton of fecal sludge over 1 year. The 'Impact World + ' and 'IPCC 2013 GWP 100a' methods evaluated impacts on ecosystems, human health, and climate change. Data sources included interviews, weighing records, and scientific publications. Results show that Scenario 8 (Flush Toilet - Evacuation - Planted Drying Beds) is most impactful on health (1.17 × 10<sup>-2</sup> DALY), while Scenario 1 (Composting Toilet - Evacuation - Unplanted Drying Beds) is least impactful (1.77 × 10<sup>-3</sup> DALY). For ecosystem impacts, Scenario 2 (Container-based Toilet - Evacuation - Planted Drying Beds) is most impactful (3.81 × 10<sup>3</sup> PDF·m<sup>2</sup>·year), while Scenario 6 (VIP latrine - Evacuation - Lagoons) is least impactful (3.52 × 10<sup>3</sup> PDF·m<sup>2</sup>·year). Key hotspots include toilet paper, wood shavings, GHG emissions, and water use. The study recommends an integrated approach combining environmental life cycle assessment (LCA) with life cycle cost assessment and social LCA for sustainable decision-making on sanitation systems in low-income countries.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 10","pages":"2842-2856"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. 利用厌氧消化进行污水污泥管理和强化能源回收:一种见解。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-05 DOI: 10.2166/wst.2024.269
Vinay Pratap, Sunil Kumar, Bholu Ram Yadav
{"title":"Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight.","authors":"Vinay Pratap, Sunil Kumar, Bholu Ram Yadav","doi":"10.2166/wst.2024.269","DOIUrl":"https://doi.org/10.2166/wst.2024.269","url":null,"abstract":"<p><p>Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 3","pages":"696-720"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized wastewater management utilizing multivariate statistical analysis: a case study of the Mascara wastewater treatment plant, Algeria. 利用多元统计分析优化废水管理:阿尔及利亚 Mascara 废水处理厂案例研究。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI: 10.2166/wst.2024.276
Imène Benstaali, Amel Talia, Laouni Benadela
{"title":"Optimized wastewater management utilizing multivariate statistical analysis: a case study of the Mascara wastewater treatment plant, Algeria.","authors":"Imène Benstaali, Amel Talia, Laouni Benadela","doi":"10.2166/wst.2024.276","DOIUrl":"https://doi.org/10.2166/wst.2024.276","url":null,"abstract":"<p><p>Effective wastewater management is crucial in regions experiencing water scarcity and environmental stressors, such as pollution and climate change. Optimizing treatment processes is essential for achieving environmental sustainability. This study aims to highlight the importance of effective wastewater management strategies, particularly in regions facing water scarcity. Our objective was to identify key factors influencing the treatment process. Therefore, we evaluated associations between physicochemical parameters using multivariate statistical methods, including Principal Component Analysis (PCA) and Hierarchical Ascendant Classification (HAC). Our findings categorize the monthly water samples into three distinct groups based on levels of organic pollution: the first group (July, August, and September) is characterized by high oxygenation levels and significantly low organic pollution, indicating optimal system operation. The second group (April, October, November, and December) exhibits low oxygenation and low organic pollution, promoting sludge settling and pollutant reduction. The third group (January, February, March, May, and June) shows significantly high organic pollution and low oxygenation, which corresponds to unfavorable environmental conditions. Our study demonstrates the effectiveness of multivariate statistical methods in optimizing wastewater treatment processes, providing crucial insights for environmental sustainability and water resource management<b>.</b></p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1290-1305"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wetland systems for water pollution control. 用于水污染控制的湿地系统。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 DOI: 10.2166/wst.2024.245
Jaime Nivala, Pedro N Carvalho, Remy Gourdon, Mathieu Gautier, Pascal Molle, Florent Chazarenc
{"title":"Wetland systems for water pollution control.","authors":"Jaime Nivala, Pedro N Carvalho, Remy Gourdon, Mathieu Gautier, Pascal Molle, Florent Chazarenc","doi":"10.2166/wst.2024.245","DOIUrl":"https://doi.org/10.2166/wst.2024.245","url":null,"abstract":"","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 3","pages":"iii-v"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still. 基于模糊逻辑的预测和利用粒子群优化技术进行参数优化,以提高金字塔型太阳能蒸发器的性能。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI: 10.2166/wst.2024.277
N Senthilkumar, M Yuvaperiyasamy, B Deepanraj, K Sabari
{"title":"Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still.","authors":"N Senthilkumar, M Yuvaperiyasamy, B Deepanraj, K Sabari","doi":"10.2166/wst.2024.277","DOIUrl":"https://doi.org/10.2166/wst.2024.277","url":null,"abstract":"<p><p>The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m<sup>2</sup>, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (<i>P</i>), glass temperature (<i>T</i><sub>g</sub>), and basin water temperature (<i>T</i><sub>w</sub>). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS<b>.</b></p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1321-1337"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel optimized coupled rainfall model simulation based on stepwise decomposition technique. 基于逐步分解技术的新型优化耦合降雨模型模拟。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-07-31 DOI: 10.2166/wst.2024.263
Zhiwen Zheng, Yuan Yao, Xianqi Zhang, Yue Zhao, Yu Qi
{"title":"Novel optimized coupled rainfall model simulation based on stepwise decomposition technique.","authors":"Zhiwen Zheng, Yuan Yao, Xianqi Zhang, Yue Zhao, Yu Qi","doi":"10.2166/wst.2024.263","DOIUrl":"https://doi.org/10.2166/wst.2024.263","url":null,"abstract":"<p><p>Precipitation forecasting plays a pivotal role in guiding the effective management of regional water resources and providing crucial warnings for regional droughts and floods. Finding a monthly precipitation simulation model with robust fitting performance is a significant research endeavor in practical precipitation prediction. This paper introduces two modified African vulture optimization algorithms (MAVOA1 and MAVOA2). It provides hyperparameter optimization techniques for the least squares support vector machine (LSSVM), long short-term memory neural network (LSTM), and random forest (RF) models. These techniques are used to construct a monthly precipitation simulation model based on algorithmic optimization coupled with variational mode decomposition for full decomposition. The test results at five typical stations in the North China Plain reveal the following: (1) the LSSVM model demonstrates significantly better performance than the LSTM and RF models. (2) the MAVOA2-LSSVM model has the best-integrated effect: the average test fitting error is RMSE = 17.50 mm/month, MRE = 117.25%, NSE = 0.90, which shows its superiority in practical application and can significantly improve the accuracy of precipitation prediction; MAVOA2 is more suitable for machine learning models with more hyperparameters of its own, which provides a reference for hyperparameter optimization algorithms in the other fields.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1164-1180"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode. Co-Bi/GAC 粒子电极对 1,4-dioxane 的电催化降解。
IF 2.5 4区 环境科学与生态学
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI: 10.2166/wst.2024.274
Rui Wang, Zhineng Dai, Wenqi Zhang, Chao Ma
{"title":"The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode.","authors":"Rui Wang, Zhineng Dai, Wenqi Zhang, Chao Ma","doi":"10.2166/wst.2024.274","DOIUrl":"https://doi.org/10.2166/wst.2024.274","url":null,"abstract":"<p><p>Efficient degradation of industrial organic wastewater has become a significant environmental concern. Electrochemical oxidation technology is promising due to its high catalytic degradation ability. In this study, Co-Bi/GAC particle electrodes were prepared and characterized for degradation of 1,4-dioxane. The electrochemical process parameters were optimized by response surface methodology (RSM), and the influence of water quality factors on the removal rate of 1,4-dioxane was investigated. The results showed that the main influencing factors were the Co/Bi mass ratio and calcination temperature. The carrier metals, Co and Bi, existed mainly on the GAC surface as Co<sub>3</sub>O<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>. The removal of 1,4-dioxane was predominantly achieved through the synergistic reaction of electrode adsorption, anodic oxidation, and particle electrode oxidation, with ·OH playing a significant role as the main active free radical. Furthermore, the particle electrode was demonstrated in different acid-base conditions (pH = 3, 5, 7, 9, and 11). However, high concentrations of Cl<sup>-</sup> and NO<sub>3</sub><sup>-</sup> hindered the degradation process, potentially participating in competitive reactions. Despite this, the particle electrode exhibited good stability after five cycles. The results provide a new perspective for constructing efficient and stable three-dimensional (3D) electrocatalytic particle electrodes to remove complex industrial wastewater.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1132-1148"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信