校准普利斯特里-泰勒模型,以确定绿色屋顶不同基质深度的蒸散量。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-02-01 Epub Date: 2025-01-31 DOI:10.2166/wst.2025.011
Haowen Xie, Yawen Wu, Mark Randall
{"title":"校准普利斯特里-泰勒模型,以确定绿色屋顶不同基质深度的蒸散量。","authors":"Haowen Xie, Yawen Wu, Mark Randall","doi":"10.2166/wst.2025.011","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to address a common issue in current research: the neglect of the calibrating model parameters when estimating evapotranspiration (ET) from green roofs (GRs) using the Priestley-Taylor model, with most studies limited to a single substrate depth (SD). To overcome this limitation, this research improves the accuracy of ET estimation for different SDs on GRs by calibrating the Priestley-Taylor coefficient <i>α</i>. The study period was 692 days in total, from 25 April 2021 to 26 April 2023. Daily ET data from the outdoor GR experimental group were used to calibrate and validate the model. Uncalibrated models perform well for medium SDs (150 mm) but decline for deeper (300 mm) or shallower (50 mm) ones. NSGA-II optimization significantly improved model performance across all SDs, notably at 300 mm. The research underscores the importance of parameter calibration for water management in GRs and sets a foundation for future research on optimizing water retention and regulation functions in GRs.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 3","pages":"252-265"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating the Priestley-Taylor model for evapotranspiration across different substrate depths in green roofs.\",\"authors\":\"Haowen Xie, Yawen Wu, Mark Randall\",\"doi\":\"10.2166/wst.2025.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to address a common issue in current research: the neglect of the calibrating model parameters when estimating evapotranspiration (ET) from green roofs (GRs) using the Priestley-Taylor model, with most studies limited to a single substrate depth (SD). To overcome this limitation, this research improves the accuracy of ET estimation for different SDs on GRs by calibrating the Priestley-Taylor coefficient <i>α</i>. The study period was 692 days in total, from 25 April 2021 to 26 April 2023. Daily ET data from the outdoor GR experimental group were used to calibrate and validate the model. Uncalibrated models perform well for medium SDs (150 mm) but decline for deeper (300 mm) or shallower (50 mm) ones. NSGA-II optimization significantly improved model performance across all SDs, notably at 300 mm. The research underscores the importance of parameter calibration for water management in GRs and sets a foundation for future research on optimizing water retention and regulation functions in GRs.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"91 3\",\"pages\":\"252-265\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2025.011\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating the Priestley-Taylor model for evapotranspiration across different substrate depths in green roofs.

This study aims to address a common issue in current research: the neglect of the calibrating model parameters when estimating evapotranspiration (ET) from green roofs (GRs) using the Priestley-Taylor model, with most studies limited to a single substrate depth (SD). To overcome this limitation, this research improves the accuracy of ET estimation for different SDs on GRs by calibrating the Priestley-Taylor coefficient α. The study period was 692 days in total, from 25 April 2021 to 26 April 2023. Daily ET data from the outdoor GR experimental group were used to calibrate and validate the model. Uncalibrated models perform well for medium SDs (150 mm) but decline for deeper (300 mm) or shallower (50 mm) ones. NSGA-II optimization significantly improved model performance across all SDs, notably at 300 mm. The research underscores the importance of parameter calibration for water management in GRs and sets a foundation for future research on optimizing water retention and regulation functions in GRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信