Abeer F Al Bawab, M A Abu-Dalo, H Kanaan, N Al-Rawashdeh, F Odeh
{"title":"Removal of phenolic compounds from olive mill wastewater (OMW) by tailoring the surface of activated carbon under acidic and basic conditions.","authors":"Abeer F Al Bawab, M A Abu-Dalo, H Kanaan, N Al-Rawashdeh, F Odeh","doi":"10.2166/wst.2025.007","DOIUrl":"10.2166/wst.2025.007","url":null,"abstract":"<p><p>Olive mill wastewater (OMW), a by-product of olive oil production, poses significant environmental risks due to its acidity and high polyphenol content, particularly in water-scarce regions like Jordan. This study developed a cost-effective approach to reduce the phenolic content in OMW using modified granular-activated carbon (GAC). Commercial GAC, chosen for its high surface area and adsorption capacity, was modified via oxidative treatment with concentrated nitric acid and reductive treatment using 10 wt.% ammonia solution. The modified GAC samples were tested for phenolic compound (PC) adsorption from OMW under varying surfactant types, concentrations, and pH levels using a batch method. The optimized conditions revealed that reduced GAC at pH 9 achieved the highest removal efficiency, reducing the phenolic content by 88% after 48 h. Surfactants had no significant effect on the performance of reduced GAC. Desorption tests after 7 and 32 days indicated a minimal release of PCs, confirming strong binding to the GAC surface. These findings demonstrate the potential of reduced GAC as a sustainable and cost-efficient solution for treating OMW, addressing the critical challenges in water resource management and environmental pollution in regions like Jordan.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"567-580"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaofeng Wang, Hao Zhang, Man Gao, Tao Zhou, Yun Qian
{"title":"Prediction of surface water pollution using wavelet transform and 1D-CNN.","authors":"Gaofeng Wang, Hao Zhang, Man Gao, Tao Zhou, Yun Qian","doi":"10.2166/wst.2025.032","DOIUrl":"10.2166/wst.2025.032","url":null,"abstract":"<p><p>Permanganate index (COD<sub>Mn</sub>), total nitrogen, and ammonia nitrogen are important indicators that represent the degree of pollution of surface water. This study combined ultraviolet-visible (UV-vis) spectroscopy with a one-dimensional convolutional neural network (1D-CNN) to spectrally analyze 708 samples with different concentrations. The wavelet transform was used to preprocess the spectra to improve the model's accuracy. The results show the best prediction results using a fixed threshold (sqtwolog) of wavelets in combination with 1D-CNN, and the coefficient of determination (<i>R<sup>2</sup></i>) values of the models on the test dataset all reached more than 0.98. A comparison between the backpropagation neural network model and the extreme learning machine model reveals that the 1D-CNN model has better prediction accuracy and robustness. The experimental results show the strong practical value of using 1D-CNN to predict the levels of different compounds in surface water.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 6","pages":"684-697"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum: <i>Water Science & Technology</i>, 90 (10): 2784-2795: Comparison of reference libraries for the detection of tire-derived microplastics (TMPs), Hiroshi Sakai, Zizheng Sun and Masami Yanagihara, https://dx.doi.org/10.2166/wst.2024.378.","authors":"","doi":"10.2166/wst.2025.035","DOIUrl":"10.2166/wst.2025.035","url":null,"abstract":"","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"670"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abbas Roozbahani, Bardia Roghani, Vegard Nilsen, Kim Aleksander Haukland Paus, Ulf Rydningen
{"title":"Optimization of urban stormwater systems: a multi-criteria approach to sustainable and cost-effective LID implementation.","authors":"Abbas Roozbahani, Bardia Roghani, Vegard Nilsen, Kim Aleksander Haukland Paus, Ulf Rydningen","doi":"10.2166/wst.2025.030","DOIUrl":"10.2166/wst.2025.030","url":null,"abstract":"<p><p>Rapid urbanization has dramatically increased impervious surfaces, exacerbating flood risks in cities globally. Low-impact development (LID) practices are effective in reducing urban runoff, but selecting optimal combinations based on cost, performance, and service benefits remains crucial. This study presents a comprehensive framework for optimizing urban stormwater management by integrating a simulation-optimization module, which consists of stormwater management model-SUSTAIN models, with a multi-criteria decision-making module. To guide decision-makers, it introduces two novel criteria - sustainability index, derived from reliability, resiliency, and vulnerability indices, and vegetated LID coverage to account for LID's extra environmental benefits such as air quality improvement and aesthetics, alongside cost. The proposed methodology is applied to Tehran's District 11, where four LID scenarios, including green roofs (GR), rain barrels (RB), bioretention cells (BC), porous pavements (PP), and vegetated swales (VS), are evaluated using the WASPAS method. Scenario 2 (RB, BC, and VS) is identified as the most favourable due to its cost-effectiveness, even though it has lower vegetated LID coverage than two of the other scenarios. This study offers a practical tool to balance multiple objectives in urban stormwater system design and management, promoting sustainability and cost-efficiency.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"654-668"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New insights into the production of volatile fatty acids through low-temperature anaerobic fermentation of sludge enhanced by peracetic acid.","authors":"Yan Kuang, Yan Chen, Yan Wei, Jianwei Zhao","doi":"10.2166/wst.2025.026","DOIUrl":"10.2166/wst.2025.026","url":null,"abstract":"<p><p>The production of short-chain fatty acids (SCFAs) through anaerobic fermentation is a significant strategy for the resource utilization of excess sludge (ES). However, the limitations of low temperatures and slow ES hydrolysis rates have resulted in less than optimal volatile fatty acid (VFA) accumulation. This study reports a new method for improving ES low-temperature anaerobic fermentation for VFA production using peracetic acid (PAA) pretreatment and elucidates the underlying mechanisms. The results showed that at 10 °C, PAA significantly enhanced the release of organic matter during ES anaerobic fermentation, increasing the soluble chemical oxygen demand concentration in the fermentation liquid, thereby creating conditions for subsequent acidification processes and VFAs accumulation. When the PAA dosage was 9%, the production of VFAs reached approximately 239.5 mg COD/g volatile suspended solids (VSS), which was 1.47 times that of the control group. Mechanistic analysis revealed that PAA improved sludge hydrolysis and acidification under low-temperature conditions but inhibited VFAs consumption, increased the activity of enzymes related to the hydrolysis and acidification processes, and suppressed the activity of F420, thereby enhancing VFA accumulation. The findings provide an alternative solution for the low-temperature biological resource utilization of ES.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"554-566"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annesley Black, Kathryn Newhart, Chelsea Linvill, Alex Pytlar, Stephanie Galaitsi, Christiana Fairfield, Marley Wait, Elle Bennett, Michael Butkus, Andrew R Pfluger
{"title":"A linguistic analysis of energy terminology in the wastewater literature.","authors":"Annesley Black, Kathryn Newhart, Chelsea Linvill, Alex Pytlar, Stephanie Galaitsi, Christiana Fairfield, Marley Wait, Elle Bennett, Michael Butkus, Andrew R Pfluger","doi":"10.2166/wst.2025.036","DOIUrl":"10.2166/wst.2025.036","url":null,"abstract":"<p><p>Recent wastewater treatment research has focused on technologies that can recover resources such as energy from the influent waste stream. Many unrelated studies have introduced or used energy-related terms to describe changes to wastewater treatment plant energy balances based on these technological innovations. Unfortunately, these wastewater energy-related terms are not well defined in the literature, with many used interchangeably and/or inconsistently. To address this shortcoming, this study (1) identified and defined the most prominent energy-related terms in academic literature, (2) proposed a classification schema, and (3) explored trends in term usage over time. Energy-related terms identified from the literature were defined and classified based on the term's functional role in the context of wastewater treatment plant energy use. Specifically, each term was classified as a wastewater treatment plant's long-term energy 'state', a descriptive short-term energy 'condition' at the plant, or an energy 'mechanism' that drives a plant from one state to another. The trend analysis concluded that the development of energy-related wastewater literature has generally outpaced the baseline rate of academic publishing in all fields. The results of this study can ensure clear communication between actors in the wastewater treatment sector by standardizing definitions for energy-related terms.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 6","pages":"671-683"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143743918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling the effect of sediment and solid waste deposition on pluvial flood risk using <i>in situ</i> high-resolution rainfall and water level measurements.","authors":"Hjalmar Olsson, Seith N Mugume, Johanna Sörensen","doi":"10.2166/wst.2025.039","DOIUrl":"10.2166/wst.2025.039","url":null,"abstract":"<p><p>Pluvial flooding is a significant threat in many Sub-Saharan African cities, driven by rapid urbanisation, climate change, failures, and insufficient hydraulic capacity of existing urban drainage systems (UDSs). However, limited modelling studies have investigated the effect of sediment and solid waste accumulation on the performance of UDSs during extreme loading conditions. In this research, the influence of combined scenarios of sediment and solid waste deposition and extreme rainfall on urban flooding in the upper Lubigi catchment in Kampala was investigated. The collected high-resolution rainfall data and water level observations in combination with field observations were used for model calibration and validation. The results show three locations that account for over 50% of the flooded volume in the catchment, based on the existing conditions. A near-complete blockage of sediment and solid waste at three culvert crossings increased the flood volumes by up to 40% for higher (≥50 years) return periods and by up to 105% for low return periods (≤10 years). This research underscores the importance of using high-resolution rainfall data in flood modelling, as well as the necessity of improved UDS asset management, and effective solid waste and sediment management in order to achieve resilient and sustainable water management in cities.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 6","pages":"757-782"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Otto Chen, Navonil Mustafee, Barry Evans, Mehdi Khoury, Lydia Vamvakeridou-Lyroudia, Albert S Chen, Slobodan Djordjević, Dragan Savić
{"title":"Supporting decision-making for industrial symbioses using a hybrid modelling approach and its application to wastewater treatment.","authors":"Otto Chen, Navonil Mustafee, Barry Evans, Mehdi Khoury, Lydia Vamvakeridou-Lyroudia, Albert S Chen, Slobodan Djordjević, Dragan Savić","doi":"10.2166/wst.2025.022","DOIUrl":"10.2166/wst.2025.022","url":null,"abstract":"<p><p>Industrial Symbiosis (InSym) capitalises on the proximity of entities to gain a competitive advantage through collective strategies. Within the Circular Economy, this involves the circular exchange and reuse of water, energy, and resources among participating businesses, enhancing resource valorisation in manufacturing. However, as a distinct business model, InSym requires collaboration among multiple stakeholders working toward a shared goal, posing challenges in achieving mutually beneficial outcomes. Operations Research (OR) - particularly computer modelling and simulation techniques - can help mitigate risks in InSym implementation by enabling an experimental approach to decision-making. This paper presents a hybrid modelling framework to support InSym decision-making. The framework integrates four OR techniques: Agent-Based Simulation (ABS), Discrete-Event Simulation (DES), System Dynamics (SD), and Multiple Criteria Decision Analysis (MCDA) to develop a hybrid InSym model. ABS captures stakeholder behaviour, DES simulates operational processes, SD represents dynamic interactions, and MCDA incorporates stakeholder perspectives. The model evaluates collective treatment strategies for olive mill wastewater, addressing key challenges such as scattered small-scale olive mills, seasonal wastewater discharge, and high organic loading. This innovative framework addresses InSym decision-making at operational, tactical, and strategic levels, transforming the economy-environment dilemma into a win-win scenario for olive oil businesses and local authorities.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"501-523"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Perkis, W A Mansilla, R Glotzbach, S Munaretto, A Rubini, I Gervasio, A Argo, D Venkataswamy Gowda
{"title":"Stakeholder engagement to increase the impact of water technology case studies.","authors":"A Perkis, W A Mansilla, R Glotzbach, S Munaretto, A Rubini, I Gervasio, A Argo, D Venkataswamy Gowda","doi":"10.2166/wst.2025.004","DOIUrl":"10.2166/wst.2025.004","url":null,"abstract":"<p><p>Successful uptake and acceptance of technologies and strategies for symbiotic solutions require active engagement of relevant stakeholder groups. By exchanging knowledge, developing ideas, and learning together, stakeholders contribute to innovative and sustainable water management solutions within industrial symbiosis. ULTIMATE fosters such engagement across its nine case studies (CS) through three approaches: eXtended Reality technologies for Immersive Media Experiences (IMX), Communities of Practice (CoPs), and Water-Oriented Living Labs (WOLLs). The IMX leverages a Place by Design Playbook to co-create tailored installations that represent CS experiences, augmented by synthetic overlays and gamification via an augmented reality app. CoPs, maintained as social learning systems, bring together experts and stakeholders to co-develop and support solutions. Meanwhile, WOLLs offer real-world environments to refine and test innovations, ensuring their relevance and adoption. Together, these approaches create a framework for fostering collaboration, innovation, and sustainable practices in industrial symbiosis.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"524-539"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anaid Cano, Jose Antonio Barrios, C Maya, M Pérez, A Román, B Jiménez
{"title":"Synergistic effect of electrooxidation and anaerobic digestion of waste-activated sludge for microbial inactivation.","authors":"Anaid Cano, Jose Antonio Barrios, C Maya, M Pérez, A Román, B Jiménez","doi":"10.2166/wst.2025.016","DOIUrl":"10.2166/wst.2025.016","url":null,"abstract":"<p><p>Electrochemical pretreatment and anaerobic digestion (AD), as well as a combination of both processes, were studied for the treatment of waste-activated sludge (WAS) to evaluate microbial inactivation, for faecal coliforms, <i>Salmonella</i> spp., bacteriophages, and helminth eggs. Electrooxidation (EO) of WAS was performed in a commercial cell with boron-doped diamond electrodes. 1 L of WAS (3% total solids) was fed to the electrochemical cell in recirculation mode. The conditions tested were 19.3 mA/cm<sup>2</sup>, 30 min, and 3.8 L/min. For AD tests, raw and pretreated WAS were digested in an OxiTop<sup>®</sup> OC 110 apparatus for 15 days. Inactivation of faecal coliforms, <i>Salmonella</i> spp., and bacteriophages reached more than 5 logs when EO was combined with AD. In contrast, EO alone did not inactivate these parameters, while AD achieved eliminations around 3 logs. Moreover, the combined process inactivated 91% of the initial viable helminth eggs, considerably higher than AD (29%) and EO (0%). The results suggest that EO separates extracellular polymeric substances and segregates particles, including microorganisms, that are exposed to environmental factors (e.g., volatile fatty acids or ammonia) during AD, showing a synergistic effect.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 3","pages":"311-320"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}