Optimization of detention ponds for urban stormwater runoff and pollution control in multiple catchments system with analytical probabilistic models and particle swarm.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-02-21 DOI:10.2166/wst.2025.024
Ali Aldrees, Salisu Dan'azumi, Sani I Abba
{"title":"Optimization of detention ponds for urban stormwater runoff and pollution control in multiple catchments system with analytical probabilistic models and particle swarm.","authors":"Ali Aldrees, Salisu Dan'azumi, Sani I Abba","doi":"10.2166/wst.2025.024","DOIUrl":null,"url":null,"abstract":"<p><p>Guidelines are often set at urban catchments' outfalls to avert river pollution, where stormwater is discharged into the river. Analytical probabilistic models (APMs) in conjunction with particle swarm optimization (PSO) were used to design a detention pond system at three sub-catchments of a watershed that discharge into a common point. The objective is to design multiple ponds upstream such that the pollution control target downstream is met at the minimum cost. Given the cost of purchasing land plus the cost of construction/maintenance of the ponds in the sub-catchments, the result shows that pond depths of 2.0 m in all three sub-catchments give the least total cost. A runoff control of 88, 94, and 90%, and pollution control of 59, 45, and 66% were obtained in Ponds 1, 2, and 3, respectively, while satisfying the overall watershed's pollution control target. A sensitivity analysis was conducted by varying the land costs and different performances were obtained. The APM/PSO model can search for the optimum design parameters that satisfy upstream runoff control performances and the overall pollution control target downstream. The advantage of the approach is that it can be applied to any combination of ponds in a larger watershed.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"592-608"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.024","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Guidelines are often set at urban catchments' outfalls to avert river pollution, where stormwater is discharged into the river. Analytical probabilistic models (APMs) in conjunction with particle swarm optimization (PSO) were used to design a detention pond system at three sub-catchments of a watershed that discharge into a common point. The objective is to design multiple ponds upstream such that the pollution control target downstream is met at the minimum cost. Given the cost of purchasing land plus the cost of construction/maintenance of the ponds in the sub-catchments, the result shows that pond depths of 2.0 m in all three sub-catchments give the least total cost. A runoff control of 88, 94, and 90%, and pollution control of 59, 45, and 66% were obtained in Ponds 1, 2, and 3, respectively, while satisfying the overall watershed's pollution control target. A sensitivity analysis was conducted by varying the land costs and different performances were obtained. The APM/PSO model can search for the optimum design parameters that satisfy upstream runoff control performances and the overall pollution control target downstream. The advantage of the approach is that it can be applied to any combination of ponds in a larger watershed.

基于解析概率模型和粒子群的多集水区城市雨水径流和污染控制截流池优化。
通常在城市集水区的出水口制定指导方针,以避免河流污染,雨水被排入河流。采用分析概率模型(APMs)与粒子群优化(PSO)相结合的方法,在某流域的三个子集水区设计了一个截留池系统,并将其排入一个共同的点。目标是在上游设计多个池塘,使下游的污染控制目标以最小的成本得到满足。考虑到购买土地的成本加上子集水区池塘的建设/维护成本,结果表明,在所有三个子集水区,池塘深度为2.0 m的总成本最小。在满足流域整体污染控制目标的情况下,1、2、3池径流量控制分别达到88%、94%和90%,污染控制分别达到59%、45%和66%。通过改变土地成本进行敏感性分析,得出不同的绩效。APM/PSO模型可以搜索满足上游径流控制性能和下游总体污染控制目标的最优设计参数。该方法的优点是它可以应用于更大流域的任何池塘组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信