{"title":"Plate scale variation detecting method for LINC-NIRVANA","authors":"Zha Yan, C. Arcidiacono, T. Herbst","doi":"10.1117/12.2603959","DOIUrl":"https://doi.org/10.1117/12.2603959","url":null,"abstract":"LINC-NIRVANA is a near-infrared image-plane beam combiner with advanced layer-oriented multi-conjugated adaptive optics (MCAO) for the Large Binocular Telescope. The instrument will combine the lights from the two 8.4 m primary mirrors in “Fizeau” mode in which the wavefronts will interfere in the focal plane, not in the pupil plane, so it is a true imaging instrument. The field of view can be several arcminutes, only limited by the performance of the adaptive optics (AO) system to obtain near-zero aberration wavefronts over large sky angles. However, if the secondary mirrors of the MCAO system have mechanical displacement in a way that would make the plate scale of the two systems change and then may cause variant PSFs and a degradation of the image quality which may affect the fringe tracking performance. Thus it is very important to know whether the plate scale of LN changes or not. To try to compensate for this problem, a plate scale variation detecting method is proposed. The useful information is gotten from the un-overlapping wavefront which is measured by the high wave-front sensor (HWS), and then processed by an algorithm to extract the long-time exposure average value of wavefront tip and tilt which is related to and response to the plate scale change. The simulation study shows that the method is feasible, and the paper gives practical guidelines for the application of plate scale variation detecting for LINC-NIRVANA.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"12070 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131396762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruisheng Wang, S. Ren, X. Yin, Shuaifeng Zhao, Peng Gao, Jing Ma
{"title":"The development of six-channel quantitative real-time PCR filter sets for nucleic acid detection","authors":"Ruisheng Wang, S. Ren, X. Yin, Shuaifeng Zhao, Peng Gao, Jing Ma","doi":"10.1117/12.2604747","DOIUrl":"https://doi.org/10.1117/12.2604747","url":null,"abstract":"Analyzed the technical requirements of filter sets applied in 6-channel Quantitative Real-time PCR nucleic acid detection, and these filters meet the requirements were designed with double sides coating on single glass substrate, while each coating was about 200 layers. These coatings were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) machine, and the thickness error is less than 0.1%. Finally, the transmittance rates of these 6-channel real-time fluorescence PCR filters are <93%, the cut-off steepness was less than 1%, and the crosstalk was less than 1% in polychromatic fluorescence PCR.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116919551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao-ping Zhang, Z. Lv, Guo-yun Long, Hong Zhou, Lin Cheng
{"title":"Study on the cooling method of deformable mirror under laser irradiation","authors":"Yao-ping Zhang, Z. Lv, Guo-yun Long, Hong Zhou, Lin Cheng","doi":"10.1117/12.2603866","DOIUrl":"https://doi.org/10.1117/12.2603866","url":null,"abstract":"The deformable mirrors are becoming more and more important in laser systems. As the laser power increases, the deformation of the thin mirror also increases under laser irradiation. In this paper, to reduce the temperature rising, several cooling methods were proposed. These methods include air knife cooling, pole heads cooling, PZTs + pole heads cooling, Cu columns implanted around PZTs cooling, and PZTs inter-infill cooling. This paper mainly calculated the cooling effect of these cooling methods on the deformable mirrors under laser irradiation. In addition, the different cooling media such as water and air was also studied. Based on the results, we found the air cooling effect is poor, and water cooling effect is obvious. The cooling effect of adding heat-conducting sheets and Cu columns is not obvious. It has a good cooling effect when adding a heat-conducting Cu block with the same honeycomb shape as PZTs on the back of the mirror, and the temperature rising can be reduced from 7.46 °C to 2.96 °C. These calculations are valuable for the application of deformable mirror cooling.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114896212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenchen Song, S. Yuan, F. Niu, Tengda Di, G. Ma, Dongjiang Wu
{"title":"Microstructure and mechanical properties of Ti6Al4V/Inconel718 functionally graded materials by directed laser deposition","authors":"Chenchen Song, S. Yuan, F. Niu, Tengda Di, G. Ma, Dongjiang Wu","doi":"10.1117/12.2605320","DOIUrl":"https://doi.org/10.1117/12.2605320","url":null,"abstract":"Ti6Al4V/Inconel 718 functionally graded material combines the advantages of the two materials, it can fully meet the requirements of high temperature resistance, high strength and light weight in the extremely harsh environment of aerospace. Ti6Al4V/ Inconel 718 functional gradient materials were prepared by directed laser deposition. Scanning electron microscopy and electron probe micro-analysis were used to observe the microstructure and element distribution of functional gradient samples. The mechanical properties of the functionally graded sample were measured by Vickers hardness tester. The results show that the interface between Ti6Al4V and Inconel 718 is cleavage fracture, and the cleavage fracture is related to the formation and concentration of Ti2Ni, NiTi and Ni3Ti intermetallic compounds. A well-formed gradient sample is prepared by using gradient transition. Through the effective gradient transition form(100%Ti6Al4V- 90%Ti6Al4V/10% Inconel 718-80% Ti6Al4V/20% Inconel 718-100% Inconel 718), the element inhomogeneity at the interface is alleviated and a good metallurgical bond is formed. Along the gradient direction, the microhardness gradually increases with the increase of Inconel 718, reaching the maximum of 811HV. The reason for the increase in hardness is related to solid solution and precipitation strengthening of Ti2Ni intermetallic compounds.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123858479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation of error compensation for a 6-DoF industrial robot based on neural network and stiffness modelling","authors":"Xu Huang, L. Kong, Min Xu","doi":"10.1117/12.2604006","DOIUrl":"https://doi.org/10.1117/12.2604006","url":null,"abstract":"With the development of intelligent manufacturing, the role of industrial robots is becoming more and more important. However, the relatively low absolute positioning accuracy limits industrial robot application in high precision manufacturing. The main reason for the low positioning accuracy of industrial robots comes from the series configuration and insufficient stiffness, which leads to large motion errors. This paper proposed an error compensation method based on BP neural network combined with industrial robot stiffness model. Firstly, the relationship between the joint angles, the space stiffness and the error of the industrial robot is established through the stiffness model. Then, the neural network training set was constructed based on the experimental data and the simulation data from the established stiffness model. Finally, based on the training results of BP neural network, the spatial positioning error of the 6-DOF industrial robot was measured and compensated. Experimental results show that the error compensation method based on BP neural network increases the position accuracy by 95%, and the spatial position error is reduced to less than 0.005mm. This validates that the working performance and accuracy of the industrial robot can be improved, which is helpful for the further application of industrial robot in precision machining and measurement.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124410165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmonic metasurfaces for far-and near-field orbital angular momentum manipulation","authors":"Yihua Bai, Haoran Lv, J. Yao, Yuanjie Yang","doi":"10.1117/12.2604456","DOIUrl":"https://doi.org/10.1117/12.2604456","url":null,"abstract":"Optical beam carrying orbital angular momentum(OAM) exhibits profound potential in optical communications, micromanipulation and other related fields due to its helical wavefront. However, complex configuration of manipulating optical vortices have hindered the realization of nanophotonic systems. Recently, owing to the ultrathin structure, plasmonic metasurfaces based on abrupt phase shift have aroused appreciable interest. In this paper, we introduce a multifunctional device that integrates a focusing apparatus and an orbital angular momentum generator by the use of the plasmonic metasurfaces. This metasurface combining Archimedean spirals and spatially variant nanoslits achieves plasmonic focusing and an optical needle in the near- and far-field, respectively. Moreover, generation of optical vortex beams is shown in the far- and near-field simultaneously, where light field can be arbitrarily manipulated. We expect this work to have further applications in integrated photonic systems.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123086516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controller design for the sub-axis of large aperture telescope base on fast observation target","authors":"Rongqi Ma, Yunxia Xia, Xiang Liu, Liangzhu Yuan, Jiaming Lei, ZhiWeng Wang, Jia-guang Yuan, Tong Zhang, Chunsheng Xiang, Qiang Wang, Chuanxin Luo, Yongmei Huang, Y. Tan, Q. Bao, G. Ren","doi":"10.1117/12.2604203","DOIUrl":"https://doi.org/10.1117/12.2604203","url":null,"abstract":"Compound axis servomechanism (CAS) is the most popular form of structure used in the large aperture telescope (LAT) system in the last few decades. In the control system of the CAS, the sub-axis which is driven by a fast-steering mirror (FSM) plays a decisive role in observation target tracking. In this paper, the kinetic dynamic of fast observation target (FOT) is analyzed by the time-frequency spectrum method. A sub-axis controller base on the FOT’s kinetic dynamic is proposed to improve the tracking performance of the CAS system. Traditional double-loop control is applied in sub-axis control. The inner loop is designed to provide a large bandwidth to cope with the FOT. As for the outer loop, a new control approach that is PIPI double integrations control is introduced to achieve a better tracking performance for the FOT. Additionally, the relationship between time delay and bandwidth of the LAT system is analyzed to demonstrate that the time delay is the main restriction to further improve the bandwidth of a CCD-based sub-axis controller. The theory and the simulation result indicate the proposed approach can improve the tracking performance of the LAT system to a certain extent, but still not sufficient when it comes to the FOT.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123197845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical mirror surface shape on-site measurement based on reverse Hartmann test","authors":"Bowen Xu, Shanshan Wang, Ci Song, Yinlong Hou, Feng Shi, Q. Hao","doi":"10.1117/12.2604316","DOIUrl":"https://doi.org/10.1117/12.2604316","url":null,"abstract":"High-precision optical systems are increasingly being used in military, civil and aerospace fields. Computer numerical control small grinding head grinding technology, performing as an efficient ultra-precision machining method, has been widely used in the field of mirror processing and manufacturing. High-precision detection of the surface shape is a key step to ensure the quality of the precision processing of optical mirrors. This can be quickly and effectively achieved by on-site measurement, therefore improving processing efficiency. A method called reverse Hartmann test was proposed for ultra-precision grinding machine tools. This method not only ensures high detection accuracy, but also has the advantages of simple structure, high detection efficiency, and strong robust ability, which can be used to perform the on-site measurement inside the grinding machine tools. According to the application conditions, the actual reverse Hartmann surface shape on-site detection system was built inside the small grinding head machine tools, and the on-site measurement of the 250mm flat mirror was completed within 3 minutes. The surface shape measurement repeatability was better than λ/37, which proved the efficiency and feasibility of reverse Hartmann test shape on-site detection system.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123536530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongsheng Yao, Qixin Li, Le Shen, Jiao-teng Ding, ZHEN YA Ma, XueWu Fan
{"title":"Investigation of wheel polishing technology based on industrial robot","authors":"Yongsheng Yao, Qixin Li, Le Shen, Jiao-teng Ding, ZHEN YA Ma, XueWu Fan","doi":"10.1117/12.2605412","DOIUrl":"https://doi.org/10.1117/12.2605412","url":null,"abstract":"In this paper, industrial robot is used as motion carrier and self-developed flexible wheel tool is used as polishing tool to realize low-cost, high-efficiency, and high-precision optical processing. Firstly, the mapping formula between the workpiece coordinates and the road point coordinates is deduced, and the position and posture data required for robot programming are obtained. Secondly, a new type of wheel polishing tool is designed, which controls the polishing pressure through a pneumatic floating structure to ensure the stability of the removal function. Finally, an off-axis paraboloid of φ345mm was processed using this technology. After three times of processing for 10 hours, the surface error converged from PV-2.111λ, RMS-0.249λ to PV-0.119λ, RMS-0.01λ. PV and RMS converged by 94% and 96%, respectively. This proves that the technology has the advantages of high efficiency and high precision, and is expected to be widely used in the field of precision optical processing.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128679366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and analysis of surface roughness in fused silica by CO2 laser smoothing","authors":"Xinyu Luo, Wei Yang, Yaguo Li","doi":"10.1117/12.2603935","DOIUrl":"https://doi.org/10.1117/12.2603935","url":null,"abstract":"The research of CO2 laser smoothing fused silica to achieve smooth surface was investigated by simulations and experiments. Micro-flow smoothing of fused silica was numerically simulated. In the experiments, the influence of processing parameters, such as P (laser power), v (scanning velocity) and d (scanning path pitch) were taken into account on surface roughness (Ra) after laser irradiation. The results show that the roughness is rapidly reduced from 183.6nm to 14.27nm under P=35W, v=0.2mm/s, d=1.0mm, and thus the smooth surface is obtained. On the other hand, the raster structure will appear on the surface at inappropriate parameters (P=30W or v=0.5mm/s or d=2.0mm). The surface roughness highly influenced by raster structure ranges from ~40nm to ~140nm, 140.9nm for P=30W, 71.6nm for v=0.5mm/s, 41.3nm for d=2.0mm.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127662129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}