{"title":"Zoom lens with large aperture and long focal length in the integration system of detection and recognition","authors":"Rui Yao, Xu-yang Li, Zixuan Ma, Zhi-guang Ren, Nanqing Chu","doi":"10.1117/12.2604746","DOIUrl":"https://doi.org/10.1117/12.2604746","url":null,"abstract":"This paper designs an integrated optical system for detection and recognition. The system combines the R-C (Ritchey-Chretien optics) system and the zoom structure. The R-C mirror design of the initial structure of the system is completed by calculation of theory. Then, use the zoom theory to complete the design of the two zoom positions. The two zoom positions respectively realize the detection and identification of space debris. The F numbers are 5.86 and 11. The field of view angles are 2.83°and 0.6°. It works in band of 400-750nm. The system has an entrance pupil diameter of 300mm. The detection position can detect space debris with a brightness of 13 magnitude stars, with focal length of 1760mm; the recognition position’s modulation transfer function is greater than 0.6 at the Nyquist frequency of 33.33lp/mm, with the focal length of 3300mm. The zoom theory is well applied in the integrated detection and recognition system.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127962367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a line-scanning dispersive objective lens for chromatic confocal displacement sensor","authors":"Tingting Huang, Jie Yang, Tao Ma","doi":"10.1117/12.2604571","DOIUrl":"https://doi.org/10.1117/12.2604571","url":null,"abstract":"An efficient optimal designing method for a quantitative dispersive objective lens used in line-scanning chromatic confocal displacement sensor was discussed. A multi-configuration optical system consisted of paraxial and diffractive surfaces was proposed to realize the quantitative inverse linear dispersion distance in the wide FOV. The ideal optical model was used as the objective FOV for the design of dispersive lens in the inverse optical path. The multi-configuration with the axial quantitative dispersion was implicit in the single configuration optical path, so that the image plane becomes a unified reference plane for image quality evaluation. With this method, a dispersive objective lens of 580nm-780nm working wavelength band and 0.37 mm axial dispersion distance was designed, which the line-scanning width is 16 mm and the dispersive linearity is better than 0.9997.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124462985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen-dong Shi, Hua Ma, Lin Zhang, Jinxi Bai, Yi Yang, Huan Ren, Liqun Chai
{"title":"A new optical polarizing prism extinction ratio measurement method based on heterodyne-detecting","authors":"Zhen-dong Shi, Hua Ma, Lin Zhang, Jinxi Bai, Yi Yang, Huan Ren, Liqun Chai","doi":"10.1117/12.2604853","DOIUrl":"https://doi.org/10.1117/12.2604853","url":null,"abstract":"We present a method for measuring the polarization extinction ratio of a prism with the heterodyne-detecting. The key of this method is converting the intensity difference of more than one million times between vertical and parallel polarized transmitted light to almost equal level, so as to overcome the difficulty of measuring the intensity of both vertical and parallel components in the linear response range of a normal photodetector without attenuation. Using this method, we have realized the measurement of a polarizing Glan-Taylor prism with extinction ratio of 60.4dB.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121400358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinxue Ma, Jianli Wang, Bin Wang, Xinyue Liu, Hongwen Li
{"title":"The research on optical free-form metrology technologies","authors":"Xinxue Ma, Jianli Wang, Bin Wang, Xinyue Liu, Hongwen Li","doi":"10.1117/12.2604995","DOIUrl":"https://doi.org/10.1117/12.2604995","url":null,"abstract":"With the rapid development of national defense, aerospace and other fields, the demand for high precision and high quality photoelectric products is increasing day by day, and these photoelectric products are gradually developing toward miniaturization. If the optical elements use a free-form, the imaging quality of the optical imaging system can be greatly improved, and the illumination uniformity of the optical illumination system and the transmission efficiency of the information transmission system can also be remarkably improved. With free-form optics becoming the leading representative technology of advanced optical engineering, optical metrology technologies for free-form optics has become the hotspot research of current science-technology development. In this paper, the development of optical metrology technologies, the present situation and the advantages and disadvantages of various metrology technologies are described in detail, which will be of guiding significance for future research on optical metrology technologies for free-form optics.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"683 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116110305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conjugated polymer film fabricated by in situ electro-chemical polymerization as effective interface modification material in organic solar cells","authors":"R. Wang, Dayong Zhang, Genjie Yang, Junsheng Yu","doi":"10.1117/12.2604414","DOIUrl":"https://doi.org/10.1117/12.2604414","url":null,"abstract":"Electro-chemical polymerization has identified to be a facile and useful method for the preparation of electroactive and conducting polymer films, and capability of precise control of the film properties. With this strategy, a large number of conjugated polymers were developed as specific interface modification layers to meet the requirements from various electronic equipment. Here we report the synthesis of conjugated polymer film prepared by in situ electro-chemical polymerization as effective interface modification layer between ITO and ZnO in organic solar cells. By optimizing the polymerization potential to control accurately the thickness of conjugated polymer layer, the resulting devices show significantly enhancement of short-circuit current, with an optimized power conversion efficiency (PCE) of 14.9%. As a result, the reasonable interface modification strategy via electro-chemical polymerization seems to be able to bring a new design perspective for the development of high-performance organic solar cells.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126761749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface passivation of active layer by introducing sodium alginate for high-performance perovskite photodetectors","authors":"Genjie Yang, Dayong Zhang, Jiawen Li, Junsheng Yu","doi":"10.1117/12.2603956","DOIUrl":"https://doi.org/10.1117/12.2603956","url":null,"abstract":"Recently, organic metal halide perovskites have attracted wide attention in the field of photovoltaic devices due to series of excellent photoelectric properties. However, the device performance is limited by a large number of surface defects in the perovskite film. Finding an effective method for defect passivation of perovskite film is considered to be a preferred strategy to further improve the performance of perovskite photovoltaic devices. Here, we use an organic metal salt, sodium alginate (SA), to passivate the surface defects of perovskite films to prepare high-performance perovskite photodetectors (PePDs). We find that the introduction of SA can improve the quality of perovskite active layer and passivate the surface defects effectively, which reduce the carrier recombination probability to increase the photocurrent and reduce the dark current of the PePDs. And the detectivity (D*) at 600 nm reaches 3.6×1012 Jones, three times that of the controlled devices. Meanwhile, the PePDs doped with sodium alginate have better stability and device life, which remains 82% of the original performance after being placed in the atmosphere for 7 days. These results indicate that it is an effective strategy to passivate perovskite film with organic metal salt to prepare high-performance PePDs.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125876525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Zhang, Qian Cheng, Yinjin Wu, Dongfang Chen, Ze Ma, Congwu Li
{"title":"Design of broadband and monolayer terahertz metasurface absorber with genetic algorithm optimization","authors":"Ming Zhang, Qian Cheng, Yinjin Wu, Dongfang Chen, Ze Ma, Congwu Li","doi":"10.1117/12.2604481","DOIUrl":"https://doi.org/10.1117/12.2604481","url":null,"abstract":"Terahertz (THz) absorbers have drawn great attention due to their potential applications in high-resolution imaging systems, sensing, and imaging. In particular, metasurface-based THz absorbers have exhibited the exotic advantage in high efficiency and broad bandwidth benefitted from the excellent abilities of metasurface in flexible modulating electromagnetic (EM) waves. However, the interactions between metasurface and EM waves are complex, and the metasurface-based absorbers have many structural parameters to optimize for high performance. Therefore, the absorbers are constrained by the manual design process with limited geometry complexity and tedious parameters sweeping. In this paper, the genetic algorithm (GA) is employed to the design of THz metasurface absorber. The EM responses of metasurface device is calculated by a simple yet powerful analytic method derived from catenary field. The employment of GA can achieve the automatic design process and demand-oriented reverse design for high performance and decreasing time consumption. As a proof-of-concept, the broadband and monolayer metasurface terahertz absorber with absorbance exceeding 80% in the frequency range from 1 to 4 THz is designed by the proposed strategy based on five typical types of metasurface. The investigations of this article present important guidance and a promising approach to design and optimize metasurface-based devices for their practical applications.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125480125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithographic exposure latitude aware source and mask optimization","authors":"Lulu Zou, Lihui Liu, Yiyu Sun, Pengzhi Wei, Miao Yuan, Zhaoxuan Li, Yaning Li, Yanqiu Li","doi":"10.1117/12.2604844","DOIUrl":"https://doi.org/10.1117/12.2604844","url":null,"abstract":"Source and mask optimization (SMO) technology is an increasingly important resolution enhancement technology (RET) that can optimize the source and mask. Various SMO methods have made great progress in terms of computational efficiency and pattern fidelity. Besides, process window (PW) is also an important indicator to evaluate the performance of lithography imaging. PW consists of exposure latitude (EL) and depth of focus (DOF). However, currently, there are few SMO methods that can directly improve EL. In this paper, we propose an EL aware SMO (ELASMO) method by innovating a new penalty function for improving the exposure latitude. Compared to the conventional SMO, the proposed ELASMO can significantly enhance aerial image contrast and enlarge the exposure latitude from 5% to 11% under the premise of ensuring imaging fidelity. ELASMO achieves high-fidelity lithography in a larger process window.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128124754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ measurement technology of robotic polishing system","authors":"Wen Wang","doi":"10.1117/12.2604749","DOIUrl":"https://doi.org/10.1117/12.2604749","url":null,"abstract":"With vigorous development of modern optical manufacturing in the direction of intelligence and precision, coupled with the continuous increase in the diameter of optical components and continuous improvement of precision requirements, industrial robot polishing technology has a wide range of application scenarios and broad development space in the field of optical manufacturing. The integration of processing and measurement is a key technology to improve the reliability and intelligence of precision manufacturing. Therefore, the research and development of in-situ measurement technology has become an important trend in the field of optical manufacturing. A measurement method based on deflectometry is a type of surface gradient measurement method that has been proposed and developed in recent years. Due to the advantages of superior simplicity, stability, and high dynamic range, it is promising for the in-situ measurement of optical surfaces. Based on monoscopic deflectometry, this paper develops an in-situ measurement device for industrial robot polishing system. The key problems of phase decoupling and optical path correction of transparent components are being researched, and high-precision double-surface measurement of transparent optical elements is realized, which is of great significance to the intelligent manufacturing of key optical elements.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131868687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Position prediction of the oyster adductor muscle based on YOLOv3 algorithm","authors":"Chao Ma, K. Cheng, Jun Liu, Shu-Wei Xu, J. Han","doi":"10.1117/12.2604732","DOIUrl":"https://doi.org/10.1117/12.2604732","url":null,"abstract":"Oyster is one of the largest cultured shellfish in the world, though it remains a challenge to shuck oysters automatically by mechanical systems, which has attracted interests of research for a long time. We design a low-cost high-temperature steam beam to heat the adductor muscle attachment area with high precision to shuck the oysters. This approach, compared to the overall heating processes, causes much less damage to the quality and physiological structure of the oysters. The key issue of our method lies in locating the adductor muscle outside of the shells as there is no obvious feature of judgment due to the irregular shapes and variant sizes of the oysters. To this end, we proposed a deep learning method for predicting the position of the adductor muscle based on the YOLOv3 algorithm. In this paper, we establish an image dataset containing 520 oyster pictures, 120 of which are labeled pictures. These images are trained in the deployment environment of GTX 1060. Experiments show that the accuracy of the model is up to 99.5%, the prediction accuracy of the adductor muscle position reaches 79.17%, and the average time to detect one single image is around 0.03s.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132652466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}