{"title":"Modeling and analysis of surface roughness in fused silica by CO2 laser smoothing","authors":"Xinyu Luo, Wei Yang, Yaguo Li","doi":"10.1117/12.2603935","DOIUrl":null,"url":null,"abstract":"The research of CO2 laser smoothing fused silica to achieve smooth surface was investigated by simulations and experiments. Micro-flow smoothing of fused silica was numerically simulated. In the experiments, the influence of processing parameters, such as P (laser power), v (scanning velocity) and d (scanning path pitch) were taken into account on surface roughness (Ra) after laser irradiation. The results show that the roughness is rapidly reduced from 183.6nm to 14.27nm under P=35W, v=0.2mm/s, d=1.0mm, and thus the smooth surface is obtained. On the other hand, the raster structure will appear on the surface at inappropriate parameters (P=30W or v=0.5mm/s or d=2.0mm). The surface roughness highly influenced by raster structure ranges from ~40nm to ~140nm, 140.9nm for P=30W, 71.6nm for v=0.5mm/s, 41.3nm for d=2.0mm.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The research of CO2 laser smoothing fused silica to achieve smooth surface was investigated by simulations and experiments. Micro-flow smoothing of fused silica was numerically simulated. In the experiments, the influence of processing parameters, such as P (laser power), v (scanning velocity) and d (scanning path pitch) were taken into account on surface roughness (Ra) after laser irradiation. The results show that the roughness is rapidly reduced from 183.6nm to 14.27nm under P=35W, v=0.2mm/s, d=1.0mm, and thus the smooth surface is obtained. On the other hand, the raster structure will appear on the surface at inappropriate parameters (P=30W or v=0.5mm/s or d=2.0mm). The surface roughness highly influenced by raster structure ranges from ~40nm to ~140nm, 140.9nm for P=30W, 71.6nm for v=0.5mm/s, 41.3nm for d=2.0mm.