Wei He , Si-yuan Feng , Jian Zhang , Hong-wu Tang , Yang Xiao , Sheng Chen , Chun-sheng Liu
{"title":"Hydrodynamic characteristics and particle tracking of 90° lateral intakes at an inclined river slope","authors":"Wei He , Si-yuan Feng , Jian Zhang , Hong-wu Tang , Yang Xiao , Sheng Chen , Chun-sheng Liu","doi":"10.1016/j.wse.2023.11.004","DOIUrl":"10.1016/j.wse.2023.11.004","url":null,"abstract":"<div><p>Lateral intakes are common in rivers. The pump efficiency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width. The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated. Meanwhile, the division width exhibits significant vertical non-uniformity at an inclined river slope, which should be clarified. Hence, a three-dimensional (3-D) hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation (OpenFOAM), and the model was validated with physical model tests for 90° lateral withdrawal from an inclined side bank. The flow fields, withdrawal sources, and division widths were investigated with different intake bottom elevations, withdrawal discharges, and main channel velocities. This study showed that under inclined side bank conditions, water entered the intake at an oblique angle, causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation. A lower withdrawal discharge, a lower bottom elevation of the intake, or a higher main channel velocity could further strengthen this phenomenon. The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions. With a low intake bottom elevation, a low withdrawal discharge, or a high main channel velocity, the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction. Under inclined slope conditions, sediment deposition near the intake entrance could be reduced, compared to that under vertical slope conditions. The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 197-208"},"PeriodicalIF":4.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023001151/pdfft?md5=4bf6740fac8cfd81551cb53ec6b9ace4&pid=1-s2.0-S1674237023001151-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139292139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of aeration on low-substrate CANON process","authors":"Qiong-qiong Xia, Wei Shang, Xing-can Zheng, Wen-an Zhang, Ya-xiong Wang, Yong-li Sun, Peng-feng Li","doi":"10.1016/j.wse.2023.11.005","DOIUrl":"10.1016/j.wse.2023.11.005","url":null,"abstract":"<div><p>The completely autotrophic nitrogen removal over nitrite (CANON) is a new type of nitrogen removal process developed in recent years. The control of dissolved oxygen (DO) in this process is relatively stringent, especially in low-substrate wastewater treatment. However, the results of studies on the operation of the process in different aeration modes are still controversial, and investigations on biofilm type CANON reactors are limited. In this study, a pilot-scale CANON bioreactor filled with suspended carriers was investigated on the treatment of wastewater at low ammonium concentrations, and the effect of the aeration mode on autotrophic nitrogen removal was evaluated. Seven conditions with various aeration on/off times and DO levels were tested. The results showed that an intermittent aeration with a 20-min/20-min aeration on/off time and DO concentrations of 1.0–1.3 mg/L at the end of the aeration period was appropriate, potentially inhibiting nitrite oxidizing bacteria (NOB) and keeping the total nitrogen (TN) removal rate at a relatively high level of 76.7% ± 2.5%. In the optimal aeration mode, the reactor achieved effluent TN and <span><math><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup><mtext>-</mtext><mi>N</mi></math></span> concentrations of (11.1 ± 3.3) mg/L and (3.6 ± 2.3) mg/L, respectively, with a hydraulic retention time of 12 h and an influent <span><math><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup><mtext>-</mtext><mi>N</mi></math></span> concentration of (48.6 ± 9.4) mg/L at 30.1°C ± 2.2°C. The results of metagenomic sequencing for microorganisms on carriers indicated that the main nitrogen removal bacteria in the reactor were Proteobacteria, Planctomycetes, and Nitrospirae. The NOB genus <em>Nitrospira</em> was completely inhibited by intermittent aeration. <em>Candidatus Kuenenia</em> had strong adaptability to low-concentration wastewater.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 3","pages":"Pages 292-299"},"PeriodicalIF":4.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023001163/pdfft?md5=9279a43348416861ef64f9c92d14a4d7&pid=1-s2.0-S1674237023001163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139295331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Hu , Lin Chen , Xian-kun Wu , Rui Luo , Rong-guan Lv , Zheng-hao Fei , Feng Yang
{"title":"Efficient removal of U(VI) from wastewater by a sponge-like 3D porous architecture with hybrid electrospun nanofibers","authors":"Lin Hu , Lin Chen , Xian-kun Wu , Rui Luo , Rong-guan Lv , Zheng-hao Fei , Feng Yang","doi":"10.1016/j.wse.2023.11.001","DOIUrl":"10.1016/j.wse.2023.11.001","url":null,"abstract":"<div><p>Removal of uranium(VI) from nuclear wastewater is urgent due to the global nuclear energy exploitation. This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques. The materials possessed an organic–inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile (PAN) and SiO<sub>2</sub>. As a supporting material, the surface of fibrous SiO<sub>2</sub> could be further functionalized by cyano groups via (3-cyanopropyl)triethoxysilane. All the cyano groups were turned into amidoxime (AO) groups to obtain a amidoxime-functionalized sponge (PAO/SiO<sub>2</sub>-AO) through the subsequent amidoximation process. The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g, a large adsorption coefficient of 4.0 × 10<sup>4</sup> mL/g, and a high removal efficiency of 97.59%. The <span><math><mrow><msubsup><mtext>UO</mtext><mn>2</mn><mrow><mn>2</mn><mo>+</mo></mrow></msubsup></mrow></math></span> adsorption kinetics perfectly conformed to the pseudo-second-order reaction. The sorbent also exhibited an excellent selectivity for <span><math><mrow><msubsup><mtext>UO</mtext><mn>2</mn><mrow><mn>2</mn><mo>+</mo></mrow></msubsup></mrow></math></span> with other interfering metal ions.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 150-156"},"PeriodicalIF":4.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023001126/pdfft?md5=c350de37006f4cd7e95054f7660984b4&pid=1-s2.0-S1674237023001126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139301763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Xu , You-peng Xu , Qiang Wang , Yue-feng Wang , Chao Gao
{"title":"Spatial diversion and coordination of flood water for an urban flood control project in Suzhou, China","authors":"Yu Xu , You-peng Xu , Qiang Wang , Yue-feng Wang , Chao Gao","doi":"10.1016/j.wse.2023.11.002","DOIUrl":"10.1016/j.wse.2023.11.002","url":null,"abstract":"<div><p>Suzhou City, located in the Yangtze River Delta in China, is prone to flooding due to a complex combination of natural factors, including its monsoon climate, low elevation, and tidally influenced position, as well as intensive human activities. The Large Encirclement Flood Control Project (LEFCP) was launched to cope with serious floods in the urban area. This project changed the spatiotemporal pattern of flood processes and caused spatial diversion of floods from the urban area to the outskirts of the city. Therefore, this study developed a distributed flood simulation model in order to understand this transition of flood processes. The results revealed that the LEFCP effectively protected the urban areas from floods, but the present scheduling schemes resulted in the spatial diversion of floods to the outskirts of the city. With rainstorm frequencies of 10.0% to 0.5%, the water level differences between two representative water level stations (Miduqiao (MDQ) and Fengqiao (FQ)) located inside and outside the LEFCP area, ranged from 0.75 m to 0.24 m and from 1.80 m to 1.58 m, respectively. In addition, the flood safety margin at MDQ and the duration with the water level exceeding the warning water level at FQ ranged from 0.95 m to 0.43 m and from 4 h to 22 h, respectively. Rational scheduling schemes for the hydraulic facilities of the LEFCP in extreme precipitation cases were developed according to flood simulations under seven scheduling scenarios. This helps to regulate the spatial flood diversion caused by the LEFCP during extreme precipitation.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 108-117"},"PeriodicalIF":4.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023001138/pdfft?md5=3899ef2a3069f5954b8645c1802d3d61&pid=1-s2.0-S1674237023001138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135664590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical modeling of a mooring line system for an offshore floating wind turbine in Vietnamese sea conditions using nonlinear materials","authors":"Hien Hau Pham","doi":"10.1016/j.wse.2023.10.004","DOIUrl":"10.1016/j.wse.2023.10.004","url":null,"abstract":"<div><p>The offshore renewable energy industry has been developing farms of floating offshore wind turbines in water depths up to 100 m. In Vietnam, floating offshore wind turbines have been developed to increase the production of clean and sustainable energy. The mooring system, which is used to keep the turbine stable and ensure the safety and economic efficiency of wind power production, is an important part of a floating offshore wind turbine. Appropriate selection of the mooring type and mooring line material can reduce the risks arising from the motion of wind turbines. Different types of mooring line material have been simulated and compared in order to determine the optimal type with the minimum motion risk for a floating wind turbine. This study focused on numerical modeling of semi-taut mooring systems using nonlinear materials for a semi-submersible wind turbine. Several modeling approaches common to current practice were applied. Hydrodynamic analysis was performed to investigate the motion of the response amplitude operators of the floating wind turbine. Dynamic analysis of mooring systems was performed using a time domain to obtain the tension responses of mooring lines under the ultimate limit states and fatigue limit states in Vietnamese sea conditions. The results showed that the use of nonlinear materials (polyester and/or nylon) for mooring systems can minimize the movement of the turbine and save costs. The use of synthetic fibers can reduce the maximum tension in mooring lines and the length of mooring lines. However, synthetic fiber ropes showed highly nonlinear load elongation properties, which were difficult to simulate using numerical software. The comparison of the characteristics of polyester and nylon mooring lines showed that the maximum and mean tensions of the nylon line were less than those of the polyester line. In addition, the un-stretched length of the polyester line was greater than that of the nylon line under the same mean tension load. Therefore, nylon material is recommended for the mooring lines of a floating offshore wind turbine.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 3","pages":"Pages 300-308"},"PeriodicalIF":4.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000960/pdfft?md5=75bbc004fb333f8d976fcfe2943d3936&pid=1-s2.0-S1674237023000960-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136129767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monitoring and evaluation of the water quality of the Lower Neches River, Texas, USA","authors":"Qin Qian , Mengjie He , Frank Sun , Xinyu Liu","doi":"10.1016/j.wse.2023.10.002","DOIUrl":"10.1016/j.wse.2023.10.002","url":null,"abstract":"<div><p>Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern. This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions. The statistical and Pearson correlation analysis on historical water samples determines that alkalinity, chloride, hardness, conductivity, and pH are highly correlated, and they decrease with increasing flow rate due to dilution. The flow rate has positive correlations with <em>Escherichia coli</em>, total suspended solids, and turbidity, which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river. The correlation between <em>E</em>. <em>coli</em> and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for <em>E</em>. <em>coli</em> to indicate the bacterial outbreak. A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers, fill missing values, and filter spikes of the sensor measurements. The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover. Therefore, utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality, then in turn to provide early alerts on water resources management decisions.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 21-32"},"PeriodicalIF":4.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000947/pdfft?md5=1db384a3a5911ead972e5028c22edcea&pid=1-s2.0-S1674237023000947-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136094613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Feng , Zheng Li , Hui Feng , Jia-yan Yang , Shou-peng Xie , Wei-bing Feng
{"title":"Contributors to tidal duration asymmetry with varied coastline configurations on western shelf of Yellow Sea","authors":"Xi Feng , Zheng Li , Hui Feng , Jia-yan Yang , Shou-peng Xie , Wei-bing Feng","doi":"10.1016/j.wse.2023.09.006","DOIUrl":"10.1016/j.wse.2023.09.006","url":null,"abstract":"<div><p>Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development. A key criterion for making this decision is the resilience to coastal flooding, which depends on the ability to predict tidal level. Tidal duration asymmetry (TDA) is a key parameter in determination of the arrival and duration of flood tides. This study selected the western inner shelf of the Yellow Sea (WYS) as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise. The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely. In the nearshore area, the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection, bottom friction, and advection, which controlled the energy transfer from M<sub>2</sub> or S<sub>2</sub> constituents to their overtides or compound tides. The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf. The vulnerability of tidal responses was due to the displacement of the M<sub>2</sub> amphidrome of the Kelvin wave on the WYS, which in turn changed tidal energy fluxes over the regime. The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 1-12"},"PeriodicalIF":4.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167423702300090X/pdfft?md5=31b454038e0267a53ab919a36d0eead2&pid=1-s2.0-S167423702300090X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136094725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-jie Guo , Wei-kang Fu , Jing-yuan Ma , Bo-jun Xi , Chen Wang , Meng-yao Guan
{"title":"Efficient removal of Cr(VI) by polydopamine-modified lignin from aqueous solution: Batch and XAFS studies","authors":"Xiao-jie Guo , Wei-kang Fu , Jing-yuan Ma , Bo-jun Xi , Chen Wang , Meng-yao Guan","doi":"10.1016/j.wse.2023.10.003","DOIUrl":"10.1016/j.wse.2023.10.003","url":null,"abstract":"<div><p>Lignocellulose has the potential to become a bio-based adsorbent due to its biodegradability and renewability. In this study, a novel polydopamine-functionalized-lignin (lignin@PDA), prepared via self-polymerization of dopamine (PDA) on lignin, was used as a bio-based adsorbent for rapid scavenging of hexavalent chromium (Cr(VI)). The morphology, functional groups, crystalline structure, and chemical composition of lignin@PDA were characterized with a scanning electron microscope–energy dispersive spectrometer, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The Cr(VI) adsorption process of lignin@PDA was studied using batch experiments as a function of pH, ionic strength, adsorbent dose, and contact time at room temperature. The adsorption rate of lignin@PDA was five times greater than that of the unmodified lignin, with a maximum adsorption capacity of 102.6 mg/g in an acidic medium. The adsorption of Cr(VI) on lignin@PDA fit the pseudo-second-order equation and the Freundlich model, indicating that the adsorption process was mainly dominated by chemisorption and surface complexation. The thermodynamic parameters showed that adsorption of Cr(VI) on lignin@PDA was an endothermic and spontaneous process. The X-ray absorption fine structure results showed that sorption and reduction of Cr(VI) into Cr(III) occurred simultaneously on lignin. Moreover, PDA coating not only improved the reactivity of lignin but also promoted the complete reduction of Cr(VI) by lignin. According to these results, polydopamine-functionalized-lignin is a promising bio-based adsorbent for immobilization of Cr(VI) from wastewater.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 51-61"},"PeriodicalIF":4.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000959/pdfft?md5=2411068b881c529f9ab87192321088f3&pid=1-s2.0-S1674237023000959-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136159589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensitivity analysis of factors affecting gravity dam anti-sliding stability along a foundation surface using Sobol method","authors":"Bo Xu, Shi-da Wang","doi":"10.1016/j.wse.2023.10.001","DOIUrl":"10.1016/j.wse.2023.10.001","url":null,"abstract":"<div><p>The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams. In this study, a sensitivity analysis framework was proposed for investigating the factors affecting gravity dam anti-sliding stability along the foundation surface. According to the design specifications, the loads and factors affecting the stability of a gravity dam were comprehensively selected. Afterwards, the sensitivity of the factors was preliminarily analyzed using the Sobol method with Latin hypercube sampling. Then, the results of the sensitivity analysis were verified with those obtained using the Garson method. Finally, the effects of different sampling methods, probability distribution types of factor samples, and ranges of factor values on the analysis results were evaluated. A case study of a typical gravity dam in Yunnan Province of China showed that the dominant factors affecting the gravity dam anti-sliding stability were the anti-shear cohesion, upstream and downstream water levels, anti-shear friction coefficient, uplift pressure reduction coefficient, concrete density, and silt height. Choice of sampling methods showed no significant effect, but the probability distribution type and the range of factor values greatly affected the analysis results. Therefore, these two elements should be sufficiently considered to improve the reliability of the dam anti-sliding stability analysis.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 4","pages":"Pages 399-407"},"PeriodicalIF":4.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000935/pdfft?md5=6159eee08288cef1ca704e3f1ddffb7c&pid=1-s2.0-S1674237023000935-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical three-dimensional modeling of earthen dam piping failure","authors":"Zhengang Wang","doi":"10.1016/j.wse.2023.09.008","DOIUrl":"10.1016/j.wse.2023.09.008","url":null,"abstract":"<div><p>A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams. This model is an erosion model, coupled with force/moment equilibrium analyses. Orifice flow and two-dimensional (2D) shallow water equations (SWE) are solved to simulate dam break flows at different breaching stages. Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae. The dam's real shape, soil properties, and surrounding area are programmed. Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow, and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses. This model is validated using the European Commission IMPACT (Investigation of Extreme Flood Processes and Uncertainty) Test #5 in Norway, Teton Dam failure in Idaho, USA, and Quail Creek Dike failure in Utah, USA. All calculated peak outflows are within 10% errors of observed values. Simulation results show that, for a V-shaped dam like Teton Dam, a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center; and if Teton Dam had broken from its center for internal erosion, a peak outflow of 117 851 m<sup>3</sup>/s, which is 81% larger than the peak outflow of 65 120 m<sup>3</sup>/s released from its right abutment, would have been released from Teton Dam. A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 1","pages":"Pages 72-82"},"PeriodicalIF":4.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000923/pdfft?md5=f830c401f4204bc116323471e725c264&pid=1-s2.0-S1674237023000923-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135587831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}