{"title":"Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for Rhodamine B degradation","authors":"","doi":"10.1016/j.wse.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Highly efficient photocatalysts have been developed for the degradation of contaminated water under visible light. In this study, N-doped TiO<sub>2</sub> (N-TiO<sub>2</sub>) and metal-free graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) composites with various Ti/C molar ratios were prepared with the simple mixing-calcining method. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalytic activity of N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> in the degradation of Rhodamine B (RhB) was investigated, and the electrochemical method was used to determine the origin of the enhanced photoactivity of N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>. The results showed that N-TiO<sub>2</sub> nanoparticles were dispersed on the surface of g-C<sub>3</sub>N<sub>4</sub> and formed a stable heterojunction structure with g-C<sub>3</sub>N<sub>4</sub>. The heterojunction between the two semiconductors could effectively prevent the recombination of photogenerated electrons and holes and improve the photocatalytic efficiency of the photocatalyst under visible light irradiation. The photocatalyst exhibited high stability, and the RhB degradation rate was still higher than 82.3% after five cycles.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 4","pages":"Pages 371-377"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023001266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Highly efficient photocatalysts have been developed for the degradation of contaminated water under visible light. In this study, N-doped TiO2 (N-TiO2) and metal-free graphitic carbon nitride (g-C3N4) composites with various Ti/C molar ratios were prepared with the simple mixing-calcining method. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The photocatalytic activity of N-TiO2/g-C3N4 in the degradation of Rhodamine B (RhB) was investigated, and the electrochemical method was used to determine the origin of the enhanced photoactivity of N-TiO2/g-C3N4. The results showed that N-TiO2 nanoparticles were dispersed on the surface of g-C3N4 and formed a stable heterojunction structure with g-C3N4. The heterojunction between the two semiconductors could effectively prevent the recombination of photogenerated electrons and holes and improve the photocatalytic efficiency of the photocatalyst under visible light irradiation. The photocatalyst exhibited high stability, and the RhB degradation rate was still higher than 82.3% after five cycles.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.