疏浚材料的特性及其有益利用的潜在范围:孟加拉国普苏尔河案例研究

IF 3.7 Q1 WATER RESOURCES
{"title":"疏浚材料的特性及其有益利用的潜在范围:孟加拉国普苏尔河案例研究","authors":"","doi":"10.1016/j.wse.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Pussur River, an important river in Bangladesh, requires approximately 6 × 10<sup>6</sup> m<sup>3</sup> of sediment to be dredged per year. At present, this dredged material is mainly dumped on the nearby agricultural and fish-cultivation lands, causing a reduction in productive land and producing negative impacts on people's livelihoods. This study aimed to investigate the engineering and environmental properties of the dredged sand of the Pussur River and evaluate the viability of its potential uses in different sectors. Bed sediments from the Pussur River and dredged material from disposal sites were collected, and laboratory investigations were performed. The test results showed that the dredged material of the Pussur River mainly consisted of fine sand with a fineness modulus ranging from 0.58 to 0.72 and could be classified as poorly graded sand according to the Unified Soil Classification System. This sand was also found suitable for land development, with a fair to poor suitability rating. Given the low concentration of heavy metals (at uncontaminated/slightly contaminated levels), the dredged sand might be safely used for land reclamation, landfill cover, and horticultural purposes, or else for other geotechnical applications without further treatment. After washing/leaching, the dredged sand could also be used as a partial replacement for local sand in concrete works. Moreover, there is a possibility of exporting the dredged sand to Singapore and the Maldives as filling material. These findings will help policymakers design dredging projects with a proper spoil management plan accounting for the dredged material's beneficial use.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 4","pages":"Pages 336-343"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of dredged material and potential scope of its beneficial use: A case study of the Pussur River in Bangladesh\",\"authors\":\"\",\"doi\":\"10.1016/j.wse.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Pussur River, an important river in Bangladesh, requires approximately 6 × 10<sup>6</sup> m<sup>3</sup> of sediment to be dredged per year. At present, this dredged material is mainly dumped on the nearby agricultural and fish-cultivation lands, causing a reduction in productive land and producing negative impacts on people's livelihoods. This study aimed to investigate the engineering and environmental properties of the dredged sand of the Pussur River and evaluate the viability of its potential uses in different sectors. Bed sediments from the Pussur River and dredged material from disposal sites were collected, and laboratory investigations were performed. The test results showed that the dredged material of the Pussur River mainly consisted of fine sand with a fineness modulus ranging from 0.58 to 0.72 and could be classified as poorly graded sand according to the Unified Soil Classification System. This sand was also found suitable for land development, with a fair to poor suitability rating. Given the low concentration of heavy metals (at uncontaminated/slightly contaminated levels), the dredged sand might be safely used for land reclamation, landfill cover, and horticultural purposes, or else for other geotechnical applications without further treatment. After washing/leaching, the dredged sand could also be used as a partial replacement for local sand in concrete works. Moreover, there is a possibility of exporting the dredged sand to Singapore and the Maldives as filling material. These findings will help policymakers design dredging projects with a proper spoil management plan accounting for the dredged material's beneficial use.</div></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"17 4\",\"pages\":\"Pages 336-343\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237023001242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023001242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

普苏尔河是孟加拉国的一条重要河流,每年需要疏浚约 6 × 106 立方米的沉积物。目前,这些疏浚物主要被倾倒在附近的农田和鱼类养殖地,导致生产用地减少,对人们的生活造成负面影响。本研究旨在调查普苏尔河疏浚沙的工程和环境特性,并评估其在不同领域的潜在用途的可行性。研究人员收集了普苏尔河的河床沉积物和弃置场的疏浚材料,并进行了实验室调查。测试结果表明,普苏尔河的疏浚物主要由细沙组成,细度模数在 0.58 至 0.72 之间,根据 "统一土壤分类系统",可归类为等级较差的沙。这种沙土也被认为适合土地开发,适宜性评级为一般至较差。由於重金屬含量低(處於未受污染或輕微污染的水平),疏浚後的海砂可安全地用作填海、堆填區覆蓋及園藝用途,或其他土力工程用途,而無須作進一步處理。经过清洗/浸出后,疏浚沙还可在混凝土工程中部分替代本地沙。此外,还可以将挖出的沙子作为填充材料出口到新加坡和马尔代夫。这些研究结果将有助于决策者在设计疏浚工程时,考虑到疏浚材料的有益用途,制定适当的弃置物管理计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of dredged material and potential scope of its beneficial use: A case study of the Pussur River in Bangladesh
The Pussur River, an important river in Bangladesh, requires approximately 6 × 106 m3 of sediment to be dredged per year. At present, this dredged material is mainly dumped on the nearby agricultural and fish-cultivation lands, causing a reduction in productive land and producing negative impacts on people's livelihoods. This study aimed to investigate the engineering and environmental properties of the dredged sand of the Pussur River and evaluate the viability of its potential uses in different sectors. Bed sediments from the Pussur River and dredged material from disposal sites were collected, and laboratory investigations were performed. The test results showed that the dredged material of the Pussur River mainly consisted of fine sand with a fineness modulus ranging from 0.58 to 0.72 and could be classified as poorly graded sand according to the Unified Soil Classification System. This sand was also found suitable for land development, with a fair to poor suitability rating. Given the low concentration of heavy metals (at uncontaminated/slightly contaminated levels), the dredged sand might be safely used for land reclamation, landfill cover, and horticultural purposes, or else for other geotechnical applications without further treatment. After washing/leaching, the dredged sand could also be used as a partial replacement for local sand in concrete works. Moreover, there is a possibility of exporting the dredged sand to Singapore and the Maldives as filling material. These findings will help policymakers design dredging projects with a proper spoil management plan accounting for the dredged material's beneficial use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信