{"title":"[<sup>11</sup>C]ER176 images brain inflammation across TSPO genotypes and colocalizes with tau.","authors":"Aisling M Chaney, Brian A Gordon","doi":"10.1016/j.tins.2025.03.005","DOIUrl":"https://doi.org/10.1016/j.tins.2025.03.005","url":null,"abstract":"<p><p>Accurately measuring brain inflammation in Alzheimer's disease (AD) is crucial due to the role of inflammatory processes in neurodegeneration. In a recent study, Appleton, Finn, et al. used [<sup>11</sup>C]ER176, a novel translocator protein 18 kDa (TSPO)-positron emission tomography (PET) tracer overcoming genotype-related binding issues, to show increased inflammation in early-onset AD, with patterns aligning more closely with tau pathology than amyloid deposition or atrophy.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating innate and learned behavior through brain circuits.","authors":"Baruch Haimson, Adi Mizrahi","doi":"10.1016/j.tins.2025.03.002","DOIUrl":"https://doi.org/10.1016/j.tins.2025.03.002","url":null,"abstract":"<p><p>Understanding how innate predispositions and learned experiences interact to shape behavior is a central question in systems neuroscience. Traditionally, innate behaviors, that is, those present without prior learning and governed by evolutionarily conserved neural circuits, have been studied separately from learned behaviors, which depend on experience and neural plasticity. This division has led to a compartmentalized view of behavior and neural circuit organization. Increasing evidence suggests that innate and learned behaviors are not independent, but rather deeply intertwined, with plasticity evident even in circuits classically considered 'innate'. In this opinion, we highlight examples across species that illustrate the dynamic interaction between these behavioral domains and discuss the implications for unifying theoretical and empirical frameworks. We argue that a more integrative approach, namely one that acknowledges the reciprocal influences of innate and learned processes, is essential for advancing our understanding of how neuronal activity drives complex behaviors.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaxing Li, Frederic Fiore, Kelly R Monk, Amit Agarwal
{"title":"Spatiotemporal calcium dynamics orchestrate oligodendrocyte development and myelination.","authors":"Jiaxing Li, Frederic Fiore, Kelly R Monk, Amit Agarwal","doi":"10.1016/j.tins.2025.02.010","DOIUrl":"https://doi.org/10.1016/j.tins.2025.02.010","url":null,"abstract":"<p><p>Oligodendrocyte lineage cells (OLCs), comprising oligodendrocyte precursor cells (OPCs) and oligodendrocytes, are pivotal in sculpting central nervous system (CNS) architecture and function. OPCs mature into oligodendrocytes, which enwrap axons with myelin sheaths that are critical for enhancing neural transmission. Notably, OLCs actively respond to neuronal activity, modulating neural circuit functions. Understanding neuron-OLC interactions is key to unraveling how OLCs contribute to CNS health and pathology. This review highlights insights from zebrafish and mouse models, revealing how synaptic and extrasynaptic pathways converge to shape spatiotemporal calcium (Ca<sup>2+</sup>) dynamics within OLCs. We explore how Ca<sup>2+</sup> signal integration across spatial and temporal scales acts as a master regulator of OLC fate determination and myelin plasticity.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matilde Aquilino, Nora Ditzer, Takashi Namba, Mareike Albert
{"title":"Epigenetic and metabolic regulation of developmental timing in neocortex evolution.","authors":"Matilde Aquilino, Nora Ditzer, Takashi Namba, Mareike Albert","doi":"10.1016/j.tins.2025.03.001","DOIUrl":"https://doi.org/10.1016/j.tins.2025.03.001","url":null,"abstract":"<p><p>The human brain is characterized by impressive cognitive abilities. The neocortex is the seat of higher cognition, and neocortex expansion is a hallmark of human evolution. While developmental programs are similar in different species, the timing of developmental transitions and the capacity of neural progenitor cells (NPCs) to proliferate differ, contributing to the increased production of neurons during human cortical development. Here, we review the epigenetic regulation of developmental transitions during corticogenesis, focusing mostly on humans while building on knowledge from studies in mice. We discuss metabolic-epigenetic interplay as a potential mechanism to integrate extracellular signals into neural chromatin. Moreover, we synthesize current understanding of how epigenetic and metabolic deregulation can cause neurodevelopmental disorders. Finally, we outline how developmental timing can be investigated using brain organoid models.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Campbell Le Heron, Lee-Anne Morris, Sanjay Manohar
{"title":"Understanding disrupted motivation in Parkinson's disease through a value-based decision-making lens.","authors":"Campbell Le Heron, Lee-Anne Morris, Sanjay Manohar","doi":"10.1016/j.tins.2025.02.008","DOIUrl":"https://doi.org/10.1016/j.tins.2025.02.008","url":null,"abstract":"<p><p>Neurobehavioural disturbances such as loss of motivation have profound effects on the lives of many people living with Parkinson's disease (PD), as well as other brain disorders. The field of decision-making neuroscience, underpinned by a plethora of work across species, provides an important framework within which to investigate apathy in clinical populations. Here we review how changes in a number of different processes underlying value-based decision making may lead to the common phenotype of apathy in PD. The application of computational models to probe both behaviour and neurophysiology show promise in elucidating these cognitive processes crucial for motivated behaviour. However, observations from the clinical management of PD demand an expanded view of this relationship, which we aim to delineate. Ultimately, effective treatment of apathy may depend on identifying the pattern in which decision making and related mechanisms have been disrupted in individuals living with PD.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143721633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The long and the short of TDP-43.","authors":"Marc Shenouda, Paul M McKeever, Janice Robertson","doi":"10.1016/j.tins.2025.03.003","DOIUrl":"https://doi.org/10.1016/j.tins.2025.03.003","url":null,"abstract":"<p><p>In a recent study, Dykstra and colleagues show that shortened TAR DNA Binding Protein 43 (sTDP-43) isoforms are generated as by-products of TDP-43 autoregulation. sTDP-43 levels are regulated through nonsense-mediated decay and proteasomal and autophagic degradation, and elicit toxicity through dominant negative effects on TDP-43 splicing activity. These results identify mechanisms contributing to sTDP-43 accumulation and toxicity in disease.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lilian G Jerow, Darcy A Krueger, Christina Gross, Steve C Danzer
{"title":"Somatic mosaicism and interneuron involvement in mTORopathies.","authors":"Lilian G Jerow, Darcy A Krueger, Christina Gross, Steve C Danzer","doi":"10.1016/j.tins.2025.02.009","DOIUrl":"10.1016/j.tins.2025.02.009","url":null,"abstract":"<p><p>Somatic mutations in genes regulating mechanistic target of rapamycin (mTOR) pathway signaling can cause epilepsy, autism, and cognitive dysfunction. Research has predominantly focused on mTOR regulation of excitatory neurons in these conditions; however, dysregulated mTOR signaling among interneurons may also be critical. In this review, we discuss clinical evidence for interneuron involvement, and potential mechanisms, known and hypothetical, by which interneurons might come to directly harbor pathogenic mutations. To understand how mTOR hyperactive interneurons might drive dysfunction, we review studies in which mTOR signaling has been selectively disrupted among interneurons and interneuron progenitors in mouse model systems. Complex cellular mosaicism and dual roles for mTOR (hyper)activation in mediating disease pathogenesis and homeostatic responses raise challenging questions for effective treatment of these disorders.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Awake replay: off the clock but on the job.","authors":"Matthijs A A van der Meer, Daniel Bendor","doi":"10.1016/j.tins.2025.02.006","DOIUrl":"https://doi.org/10.1016/j.tins.2025.02.006","url":null,"abstract":"<p><p>Hippocampal replay is widely thought to support two key cognitive functions: online decision-making and offline memory consolidation. In this review, we take a closer look at the hypothesized link between awake replay and online decision-making in rodents, and find only marginal evidence in support of this role. By contrast, the consolidation view is bolstered by new computational ideas and recent data, suggesting that (i) replay performs offline fictive learning for later goal-oriented behavior; and (ii) replay tags memories prior to sleep, prioritizing them for consolidation. Based on these recent advances, we favor an updated and refined role for awake replay - that is, supporting prioritized offline learning and tagging outside the hippocampus - rather than a direct, online role in guiding behavior.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabian Schwimmbeck, Esteban Bullón Tarrasó, Thomas Schreiner
{"title":"A role for respiration in coordinating sleep oscillations and memory consolidation.","authors":"Fabian Schwimmbeck, Esteban Bullón Tarrasó, Thomas Schreiner","doi":"10.1016/j.tins.2025.02.005","DOIUrl":"https://doi.org/10.1016/j.tins.2025.02.005","url":null,"abstract":"<p><p>Memory consolidation is thought to rely on the interplay of sleep-related brain oscillations. Drawing on recent findings that highlight the influence of respiration on these rhythms, we outline a framework positioning respiration as pacemaker for sleep's memory function. By orchestrating the cardinal non-rapid eye movement (NREM) oscillations, namely slow oscillations, spindles, and sharp wave-ripples, respiration may coordinate the hippocampo-cortical crosstalk essential for memory consolidation.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroRNA regulation of enteric nervous system development and disease.","authors":"Amy Marie Holland, Reindert Jehoul, Jorunn Vranken, Stefanie Gabriele Wohl, Werend Boesmans","doi":"10.1016/j.tins.2025.02.004","DOIUrl":"https://doi.org/10.1016/j.tins.2025.02.004","url":null,"abstract":"<p><p>The enteric nervous system (ENS), an elaborate network of neurons and glia woven through the gastrointestinal tract, is integral for digestive physiology and broader human health. Commensurate with its importance, ENS dysfunction is linked to a range of debilitating gastrointestinal disorders. MicroRNAs (miRNAs), with their pleiotropic roles in post-transcriptional gene regulation, serve as key developmental effectors within the ENS. Herein, we review the regulatory dynamics of miRNAs in ENS ontogeny, showcasing specific miRNAs implicated in both congenital and acquired enteric neuropathies, such as Hirschsprung's disease (HSCR), achalasia, intestinal neuronal dysplasia (IND), chronic intestinal pseudo-obstruction (CIPO), and slow transit constipation (STC). By delineating miRNA-mediated mechanisms in these diseases, we underscore their importance for ENS homeostasis and highlight their potential as therapeutic targets.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}