在神经退行性疾病中引发铁下垂。

IF 14.6 1区 医学 Q1 NEUROSCIENCES
Triet P M Nguyen, Francesca Alves, Darius J R Lane, Ashley I Bush, Scott Ayton
{"title":"在神经退行性疾病中引发铁下垂。","authors":"Triet P M Nguyen, Francesca Alves, Darius J R Lane, Ashley I Bush, Scott Ayton","doi":"10.1016/j.tins.2025.06.008","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal death is a defining feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and motor neuron diseases, and is accordingly a priority drug target. Among the various cell death pathways, ferroptosis, a form of regulated necrosis driven by iron-dependent lipid peroxidation, has emerged as a prominent candidate underlying neurodegeneration. Despite its potential significance, putative triggers initiating lipid peroxidation cascades that lead to ferroptosis in neurodegenerative diseases remain poorly characterized. This poses significant challenges for developing targeted and disease-specific therapies. We review evidence of ferroptosis in neurodegenerative diseases and examine potential disease-relevant triggers of ferroptosis. We propose that ferroptosis, rather than being initiated by a single triggering event, emerges due to a cumulative erosion of anti-ferroptosis defense systems. This process is likely driven by context-dependent interplay between common hallmarks of neurodegenerative diseases, including neuroinflammation, protein aggregation, mitochondrial dysfunction, altered lipid metabolism, and iron accumulation.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triggering ferroptosis in neurodegenerative diseases.\",\"authors\":\"Triet P M Nguyen, Francesca Alves, Darius J R Lane, Ashley I Bush, Scott Ayton\",\"doi\":\"10.1016/j.tins.2025.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal death is a defining feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and motor neuron diseases, and is accordingly a priority drug target. Among the various cell death pathways, ferroptosis, a form of regulated necrosis driven by iron-dependent lipid peroxidation, has emerged as a prominent candidate underlying neurodegeneration. Despite its potential significance, putative triggers initiating lipid peroxidation cascades that lead to ferroptosis in neurodegenerative diseases remain poorly characterized. This poses significant challenges for developing targeted and disease-specific therapies. We review evidence of ferroptosis in neurodegenerative diseases and examine potential disease-relevant triggers of ferroptosis. We propose that ferroptosis, rather than being initiated by a single triggering event, emerges due to a cumulative erosion of anti-ferroptosis defense systems. This process is likely driven by context-dependent interplay between common hallmarks of neurodegenerative diseases, including neuroinflammation, protein aggregation, mitochondrial dysfunction, altered lipid metabolism, and iron accumulation.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2025.06.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2025.06.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经元死亡是阿尔茨海默病(AD)、帕金森氏病(PD)、多发性硬化症(MS)和运动神经元疾病等神经退行性疾病的典型特征,因此是优先考虑的药物靶点。在各种细胞死亡途径中,铁下垂是一种由铁依赖性脂质过氧化驱动的受调节的坏死形式,已成为神经退行性变的重要候选。尽管它具有潜在的意义,但在神经退行性疾病中引发导致铁下垂的脂质过氧化级联的推定触发因素仍然缺乏特征。这对开发靶向和疾病特异性治疗提出了重大挑战。我们回顾了铁下垂在神经退行性疾病中的证据,并研究了铁下垂的潜在疾病相关触发因素。我们提出,铁下垂,而不是由单一触发事件启动,出现由于抗铁下垂防御系统的累积侵蚀。这一过程可能是由神经退行性疾病的常见特征(包括神经炎症、蛋白质聚集、线粒体功能障碍、脂质代谢改变和铁积累)之间的相互作用所驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triggering ferroptosis in neurodegenerative diseases.

Neuronal death is a defining feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and motor neuron diseases, and is accordingly a priority drug target. Among the various cell death pathways, ferroptosis, a form of regulated necrosis driven by iron-dependent lipid peroxidation, has emerged as a prominent candidate underlying neurodegeneration. Despite its potential significance, putative triggers initiating lipid peroxidation cascades that lead to ferroptosis in neurodegenerative diseases remain poorly characterized. This poses significant challenges for developing targeted and disease-specific therapies. We review evidence of ferroptosis in neurodegenerative diseases and examine potential disease-relevant triggers of ferroptosis. We propose that ferroptosis, rather than being initiated by a single triggering event, emerges due to a cumulative erosion of anti-ferroptosis defense systems. This process is likely driven by context-dependent interplay between common hallmarks of neurodegenerative diseases, including neuroinflammation, protein aggregation, mitochondrial dysfunction, altered lipid metabolism, and iron accumulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信