Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae085
{"title":"Correction to: Functional characterization of WHY-WRKY75 transcriptional module in plant response to cassava bacterial blight.","authors":"","doi":"10.1093/treephys/tpae085","DOIUrl":"https://doi.org/10.1093/treephys/tpae085","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds.","authors":"Takanori Saito, Shanshan Wang, Katsuya Ohkawa, Hitoshi Ohara, Satoru Kondo","doi":"10.1093/treephys/tpae072","DOIUrl":"10.1093/treephys/tpae072","url":null,"abstract":"<p><p>Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae077
Qian Yang, Yan Liu, Jia Zhou, Min-Ji Li, Yu-Zhang Yang, Qin-Ping Wei, Jun-Ke Zhang, Xing-Liang Li
{"title":"The transcription factor MhZAT10 enhances antioxidant capacity by directly activating the antioxidant genes MhMSD1, MhAPX3a and MhCAT1 in apple rootstock SH6 (Malus honanensis × M. domestica).","authors":"Qian Yang, Yan Liu, Jia Zhou, Min-Ji Li, Yu-Zhang Yang, Qin-Ping Wei, Jun-Ke Zhang, Xing-Liang Li","doi":"10.1093/treephys/tpae077","DOIUrl":"10.1093/treephys/tpae077","url":null,"abstract":"<p><p>Stress tolerance in apple (Malus domestica) can be improved by grafting to a stress-tolerant rootstock, such as 'SH6' (Malus honanensis × M. domestica 'Ralls Genet'). However, the mechanisms of stress tolerance in this rootstock are unclear. In Arabidopsis (Arabidopsis thaliana), the transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 is a key component of plant tolerance to multiple abiotic stresses and positively regulates antioxidant enzymes. However, how reactive oxygen species are eliminated upon activation of ZINC FINGER OF ARABIDOPSIS THALIANA 10 in response to abiotic stress remains elusive. Here, we report that MhZAT10 in the rootstock SH6 directly activates the transcription of three genes encoding the antioxidant enzymes MANGANESE SUPEROXIDE DISMUTASE 1 (MhMSD1), ASCORBATE PEROXIDASE 3A (MhAPX3a) and CATALASE 1 (MhCAT1) by binding to their promoters. Heterologous expression in Arabidopsis protoplasts showed that MhMSD1, MhAPX3a and MhCAT1 localize in multiple subcellular compartments. Overexpressing MhMSD1, MhAPX3a or MhCAT1 in SH6 fruit calli resulted in higher superoxide dismutase, ascorbate peroxidase and catalase enzyme activities in their respective overexpressing calli than in those overexpressing MhZAT10. Notably, the calli overexpressing MhZAT10 exhibited better growth and lower reactive oxygen species levels under simulated osmotic stress. Apple SH6 plants overexpressing MhZAT10 in their roots via Agrobacterium rhizogenes-mediated transformation also showed enhanced tolerance to osmotic stress, with higher leaf photosynthetic capacity, relative water content in roots and antioxidant enzyme activity, as well as less reactive oxygen species accumulation. Overall, our study demonstrates that the transcription factor MhZAT10 synergistically regulates the transcription of multiple antioxidant-related genes and elevates reactive oxygen species detoxification.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae070
Zhaoguo Wang, Xiaochun Wang, Bingxin Han, Di Liu, Chuankuan Wang
{"title":"Balance between carbon gain and loss in warmer environments: impacts on photosynthesis and leaf respiration in four temperate tree species.","authors":"Zhaoguo Wang, Xiaochun Wang, Bingxin Han, Di Liu, Chuankuan Wang","doi":"10.1093/treephys/tpae070","DOIUrl":"10.1093/treephys/tpae070","url":null,"abstract":"<p><p>The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae084
Maurizio Mencuccini
{"title":"Editorial from the Editor-in-Chief.","authors":"Maurizio Mencuccini","doi":"10.1093/treephys/tpae084","DOIUrl":"10.1093/treephys/tpae084","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae071
Dan Wang, Yuting Jin, Chaonan Guan, Qi Yang, Gang He, Nan Xu, Xuemin Han
{"title":"Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus.","authors":"Dan Wang, Yuting Jin, Chaonan Guan, Qi Yang, Gang He, Nan Xu, Xuemin Han","doi":"10.1093/treephys/tpae071","DOIUrl":"10.1093/treephys/tpae071","url":null,"abstract":"<p><p>Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae073
Rachael H Nolan, Charlotte C Reed, Sharon M Hood
{"title":"Mechanisms of fire-caused tree death are far from resolved.","authors":"Rachael H Nolan, Charlotte C Reed, Sharon M Hood","doi":"10.1093/treephys/tpae073","DOIUrl":"10.1093/treephys/tpae073","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant.","authors":"Chenxi Gao, Zhihui Wang, Weiwei Wu, Zhe Zhou, Xuming Deng, Zhidan Chen, Weijiang Sun","doi":"10.1093/treephys/tpae065","DOIUrl":"10.1093/treephys/tpae065","url":null,"abstract":"<p><p>Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae069
Ya Liu, Qinzheng Zhou, Di Wu, Caixia Liu, Xiaolin Wu, Zheng Wang, Huimin Wang, Quan Lu
{"title":"Pathogenicity and induced resistance in Larix kaempferi and Larix olgensis inoculated with Endoconidiophora fujiensis.","authors":"Ya Liu, Qinzheng Zhou, Di Wu, Caixia Liu, Xiaolin Wu, Zheng Wang, Huimin Wang, Quan Lu","doi":"10.1093/treephys/tpae069","DOIUrl":"10.1093/treephys/tpae069","url":null,"abstract":"<p><p>With climate warming and economic globalization, insect-microbe assemblages are becoming increasingly responsible for various devastating forest diseases worldwide. Japanese larch (Larix kaempferi) is extensively cultivated in China because of its high survival rate, rapid maturation and robust mechanical properties. Endoconidiophora fujiensis, an ophiostomatoid fungus associated with Ips subelongatus, has been identified as a lethal pathogen of L. kaempferi in Japan. However, there is a dearth of research on the pathogenicity of E. fujiensis in larches in China. Therefore, we investigated the pathogenicity of E. fujiensis in introduced L. kaempferi and indigenous larch (Larix olgensis) trees and compared the induced resistance responses to the pathogen in both tree species in terms of physiology and gene expression. Five-year-old saplings and 25-year-old adult trees of L. olgensis and L. kaempferi were inoculated in parallel during the same growing season. Endoconidiophora fujiensis exhibited high pathogenicity in both larch species, but particularly in L. kaempferi compared with L. olgensis adult trees; adult L. olgensis was more resistant to E. fujiensis than adult L. kaempferi, which was reflected in higher accumulation of defensive monoterpenes, such as myrcene, 3-carene and limonene and the earlier induction of defense genes catalase (CAT) and pathogenesis-related protein 1 (PR1). This study contributes to our understanding of the interactions between bark beetle-associated ophiostomatoid fungi and host larches, from phenotypic responses to alterations in secondary metabolites via defense- and metabolism-related gene activation, providing a valuable foundation for the management of larch diseases and pests in the future.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-07-02DOI: 10.1093/treephys/tpae064
Marko Stojanović, Georg Jocher, Natalia Kowalska, Justyna Szatniewska, Ina Zavadilová, Otmar Urban, Josef Čáslavský, Petr Horáček, Manuel Acosta, Marian Pavelka, John D Marshall
{"title":"Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest.","authors":"Marko Stojanović, Georg Jocher, Natalia Kowalska, Justyna Szatniewska, Ina Zavadilová, Otmar Urban, Josef Čáslavský, Petr Horáček, Manuel Acosta, Marian Pavelka, John D Marshall","doi":"10.1093/treephys/tpae064","DOIUrl":"10.1093/treephys/tpae064","url":null,"abstract":"<p><p>Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}