Peter Fransson, Hyungwoo Lim, Peng Zhao, Pantana Tor-Ngern, Matthias Peichl, Hjalmar Laudon, Nils Henriksson, Torgny Näsholm, Oskar Franklin
{"title":"氮水复合限制下森林光合和蒸腾的生态生理模型。","authors":"Peter Fransson, Hyungwoo Lim, Peng Zhao, Pantana Tor-Ngern, Matthias Peichl, Hjalmar Laudon, Nils Henriksson, Torgny Näsholm, Oskar Franklin","doi":"10.1093/treephys/tpae168","DOIUrl":null,"url":null,"abstract":"<p><p>Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in response to soil water and N availabilities.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eco-physiological model of forest photosynthesis and transpiration under combined nitrogen and water limitation.\",\"authors\":\"Peter Fransson, Hyungwoo Lim, Peng Zhao, Pantana Tor-Ngern, Matthias Peichl, Hjalmar Laudon, Nils Henriksson, Torgny Näsholm, Oskar Franklin\",\"doi\":\"10.1093/treephys/tpae168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in response to soil water and N availabilities.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpae168\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae168","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
An eco-physiological model of forest photosynthesis and transpiration under combined nitrogen and water limitation.
Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in response to soil water and N availabilities.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.