Graham J Dow, Noa Kekuewa Lincoln, Dolly Autufuga, Robert Paull
{"title":"从森林到农业:确定面包果在不同环境下的光合作用限制。","authors":"Graham J Dow, Noa Kekuewa Lincoln, Dolly Autufuga, Robert Paull","doi":"10.1093/treephys/tpaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Breadfruit (Artocarpus altilis (Parkinson) Fosberg) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop of high potential, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes. Here, we used a multi-environment breadfruit variety trial across the Hawaiian Islands to determine photosynthetic limitations, understand the role of site conditions or varietal features, and define their contributions to agronomic efficiency. Photosynthetic rates were dependent on location and variety, and strongly correlated with fruit yield (r2 = 0.80, P < 0.001). Photochemistry was suitable to full-sunlight conditions, with a saturation point of 1545 photosynthetically active radiation, Vcmax of 151 μmol m-2 s-1 and Jmax of 128 μmol m-2 s-1, which are high-end compared with other tropical and temperate tree crops. However, limitations on CO2 assimilation were imposed by stomatal characteristics, including stomatal density (P < 0.05) and diurnal oscillations of stomatal conductance (>50% reductions from daily maxima). These constraints on CO2 diffusion are likely to limit maximum productivity more than photochemistry. Our results comprise the first comprehensive analysis of breadfruit photosynthesis, successfully link ecophysiology with fruit yield, and identify vital traits for future research and management optimization.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From forests to farming: identification of photosynthetic limitations in breadfruit across diverse environments.\",\"authors\":\"Graham J Dow, Noa Kekuewa Lincoln, Dolly Autufuga, Robert Paull\",\"doi\":\"10.1093/treephys/tpaf007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breadfruit (Artocarpus altilis (Parkinson) Fosberg) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop of high potential, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes. Here, we used a multi-environment breadfruit variety trial across the Hawaiian Islands to determine photosynthetic limitations, understand the role of site conditions or varietal features, and define their contributions to agronomic efficiency. Photosynthetic rates were dependent on location and variety, and strongly correlated with fruit yield (r2 = 0.80, P < 0.001). Photochemistry was suitable to full-sunlight conditions, with a saturation point of 1545 photosynthetically active radiation, Vcmax of 151 μmol m-2 s-1 and Jmax of 128 μmol m-2 s-1, which are high-end compared with other tropical and temperate tree crops. However, limitations on CO2 assimilation were imposed by stomatal characteristics, including stomatal density (P < 0.05) and diurnal oscillations of stomatal conductance (>50% reductions from daily maxima). These constraints on CO2 diffusion are likely to limit maximum productivity more than photochemistry. Our results comprise the first comprehensive analysis of breadfruit photosynthesis, successfully link ecophysiology with fruit yield, and identify vital traits for future research and management optimization.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf007\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf007","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
From forests to farming: identification of photosynthetic limitations in breadfruit across diverse environments.
Breadfruit (Artocarpus altilis (Parkinson) Fosberg) is a prolific tropical tree producing highly nutritious and voluminous carbohydrate-rich fruits. Already recognized as an underutilized crop of high potential, breadfruit could ameliorate food insecurity and protect against climate-related productivity shocks in undernourished equatorial regions. However, a lack of fundamental knowledge impedes widespread agricultural adoption, from modern agroforestry to plantation schemes. Here, we used a multi-environment breadfruit variety trial across the Hawaiian Islands to determine photosynthetic limitations, understand the role of site conditions or varietal features, and define their contributions to agronomic efficiency. Photosynthetic rates were dependent on location and variety, and strongly correlated with fruit yield (r2 = 0.80, P < 0.001). Photochemistry was suitable to full-sunlight conditions, with a saturation point of 1545 photosynthetically active radiation, Vcmax of 151 μmol m-2 s-1 and Jmax of 128 μmol m-2 s-1, which are high-end compared with other tropical and temperate tree crops. However, limitations on CO2 assimilation were imposed by stomatal characteristics, including stomatal density (P < 0.05) and diurnal oscillations of stomatal conductance (>50% reductions from daily maxima). These constraints on CO2 diffusion are likely to limit maximum productivity more than photochemistry. Our results comprise the first comprehensive analysis of breadfruit photosynthesis, successfully link ecophysiology with fruit yield, and identify vital traits for future research and management optimization.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.