Tree physiology最新文献

筛选
英文 中文
Seasonal changes in hydraulic functions of eight temperate tree species: divergent responses to freeze-thaw cycles in spring and autumn. 八种温带树种水力功能的季节性变化:对春秋两季冻融循环的不同反应。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae132
Zhimin Li, Dandan Luo, Muhammed Mustapha Ibrahim, Xianzhen Luo, Rufang Deng, Chuankuan Wang, Enqing Hou
{"title":"Seasonal changes in hydraulic functions of eight temperate tree species: divergent responses to freeze-thaw cycles in spring and autumn.","authors":"Zhimin Li, Dandan Luo, Muhammed Mustapha Ibrahim, Xianzhen Luo, Rufang Deng, Chuankuan Wang, Enqing Hou","doi":"10.1093/treephys/tpae132","DOIUrl":"10.1093/treephys/tpae132","url":null,"abstract":"<p><p>Freeze-thaw cycles (FTCs) are the major seasonal environment stress in the temperate and boreal forests, inducing hydraulic dysfunction and limiting tree growth and distribution. There are two types of FTCs in the field: FTCs with increasing temperature from winter to spring (spring FTCs); and FTCs with decreasing temperature from autumn to winter (autumn FTCs). While previous studies have evaluated the hydraulic function during the growing season, its seasonal changes and how it adapts to different types of FTCs remain unverified. To fill this knowledge gap, the eight tree species from three wood types (ring- and diffuse-porous, tracheid) were selected in a temperate forest undergoing seasonal FTCs. We measured the branch hydraulic traits in spring, summer, autumn, and early, middle and late winter. Ring-porous trees always showed low native hydraulic conductance (Kbranch), and high percentage loss of maximum Kbranch (PLCB) and water potential that loss of 50% maximum Kbranch (P50B) in non-growing seasons (except summer). Kbranch decreased, and PLCB and P50B increased in diffuse-porous trees after several spring FTCs. In tracheid trees, Kbranch decreased after spring FTCs while the P50B did not change. All sampled trees gradually recovered their hydraulic functions from spring to summer. Kbranch, PLCB and P50B of diffuse-porous and tracheid trees were relatively constant after autumn FTCs, indicating almost no effect of autumn FTCs on hydraulic functions. These results suggested that hydraulic functions of temperate trees showed significant seasonal changes, and spring FTCs induced more hydraulic damage (except ring-porous trees) than autumn FTCs, which should be determined by the number of FTCs and trees' vitality before FTCs. These findings advance our understanding of seasonal changes in hydraulic functions and how they cope with different types of FTC in temperate forests.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal and diurnal variations in leaf aroma volatiles of Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm as evidenced from metabolite profiling, histochemical and ultrastructural analyses. 代谢物分析、组织化学和超微结构分析显示的 Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm 叶片香气挥发物的季节和昼夜变化。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae138
Sulagna Saha, Adinpunya Mitra
{"title":"Seasonal and diurnal variations in leaf aroma volatiles of Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm as evidenced from metabolite profiling, histochemical and ultrastructural analyses.","authors":"Sulagna Saha, Adinpunya Mitra","doi":"10.1093/treephys/tpae138","DOIUrl":"10.1093/treephys/tpae138","url":null,"abstract":"<p><p>Though the leaves of Cinnamomum tamala is extensively employed in culinary applications due to its rich aroma and therapeutic properties, the produce exhibits variability in composition and contents of leaf essential oil due to fluctuations in climatic conditions and harvesting time. This work evaluated the impact of seasonal and diurnal variations on the composition and contents of aroma volatiles in the mature leaves of C. tamala. In summer, the profile of aroma volatile was dominated by phenylpropanoids (112.96 ± 24.11 μg g-1 of freeze-dried [FD] leaf tissue) while in winter monoterpenes (58.45 ± 8.194 μg g-1 of FD leaf tissue) acquired the dominance. The variability in the contents of primary metabolites was shown to be influenced by the harvesting season and time. Organic acids and sugars showed highest accumulation in leaves harvested during summer evening and winter morning, respectively. Histochemical study showed the presence of lipids and terpenes in the secretory cells as revealed through sudan III and NaDi staining. The ontogeny of secretory oil cells that accumulate essential oil were elucidated through ultrastructural study.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming. 亚热带树木林间幼苗的休眠特性及其对实验升温的物候反应
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae124
Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang
{"title":"Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming.","authors":"Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang","doi":"10.1093/treephys/tpae124","DOIUrl":"10.1093/treephys/tpae124","url":null,"abstract":"<p><p>Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The balance between alleviating copper damage and maintaining root function during root pruning with excessive copper. 在使用过量铜元素修剪根部时,如何在减轻铜损伤和保持根部功能之间取得平衡。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae129
Yumei Zhou, Shiyun Wu, Jingjing Jia, Huan Chen, Ying Zhang, Zejing Wu, Boya Chen, Can Liu, Ming Yang
{"title":"The balance between alleviating copper damage and maintaining root function during root pruning with excessive copper.","authors":"Yumei Zhou, Shiyun Wu, Jingjing Jia, Huan Chen, Ying Zhang, Zejing Wu, Boya Chen, Can Liu, Ming Yang","doi":"10.1093/treephys/tpae129","DOIUrl":"10.1093/treephys/tpae129","url":null,"abstract":"<p><p>Coating high concentrations of copper (Cu) on the inner wall of containers can efficiently inhibit root entanglement of container-grown seedlings. However, how the protective and defensive responses of roots maintain root structure and function during Cu-root pruning is still unclear. Here, Duranta erecta L. seedlings were planted in the containers coated with 40 (T1), 80 (T2), 100 (T3), 120 (T4), 140 (T5) and 160 (T6) g L-1 Cu(OH)2 with containers without Cu(OH)2 as the control. Although T5 and T6 produced the best inhibitory effect on root entanglement, root anatomy structure was damaged. T1 and T2 not only failed to completely control root circling, but also led to decreased root activity and stunted growth. Cu(OH)2 treatments significantly increased lignin concentration of roots with the highest values at T3 and T4. Compared with T3, seedlings at T4 had higher height, biomass and root activity, and no significant root entanglement. Excessive Cu accumulation in Cu(OH)2 treatments changed the absorption of other mineral nutrients and their allocation in the roots, stems and leaves. Overall, Ca was decreased while Mg, Mn, Fe and K were increased, especially K and Mn at T4 which is related to defense capacity. The results indicate that there is a Cu threshold to balance root entanglement control, defense capacity and nutrient uptake function under excessive Cu for container-grown D. erecta seedlings.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A whole-plant perspective of hydraulic strategy in temperate desert shrub species. 温带沙漠灌木物种水力策略的全植物视角。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae130
Fengsen Tan, Xu Li, Wenxu Cao, Shidan Zhu, Na Duan, Qinghe Li
{"title":"A whole-plant perspective of hydraulic strategy in temperate desert shrub species.","authors":"Fengsen Tan, Xu Li, Wenxu Cao, Shidan Zhu, Na Duan, Qinghe Li","doi":"10.1093/treephys/tpae130","DOIUrl":"10.1093/treephys/tpae130","url":null,"abstract":"<p><p>Desert shrubs play a crucial role in controlling desertification and promoting revegetation, but drought often hinders their growth. Investigating the hydraulic strategies of desert shrubs is important in order to understand their drought adaptation and predict future dynamics under climate change. In this study, we measured the hydraulic-related characteristics of roots, stems and leaves in 19 desert shrub species from northern China. We aimed to explore the hydraulic coordination and segmentation between different plant organs. The results were as follows: (i) specific root length was positively correlated with the water potential inducing a 50% loss in stem hydraulic conductivity (P50stem) and negatively correlated with stem hydraulic safety margin. This suggested that water uptake efficiency of the fine roots was traded off with stem embolism resistance and hydraulic safety. (ii) The water potential inducing a 50% loss in leaf hydraulic conductance was significantly less negative than P50stem, and fine root turgor loss point was significantly less negative than P50stem, indicating a hydraulic segmentation between the main stem and terminal organs. (iii) The most negative leaf turgor loss point indicated that leaf wilting occurred after substantial leaf and stem embolism. The high desiccation resistance of the leaves may serve as an important physiological mechanism to increase carbon gain in a relatively brief growth period. In summary, this study elucidated the hydraulic strategies employed by desert shrubs from a whole-plant perspective.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The circadian clock participates in seasonal growth in Norway spruce (Picea abies). 昼夜节律时钟参与了挪威云杉(Picea abies)的季节性生长。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-05 DOI: 10.1093/treephys/tpae139
David Lázaro-Gimeno, Camilla Ferrari, Nico Delhomme, Mikael Johansson, Johan Sjölander, Rajesh Kumar Singh, Marek Mutwil, Maria E Eriksson
{"title":"The circadian clock participates in seasonal growth in Norway spruce (Picea abies).","authors":"David Lázaro-Gimeno, Camilla Ferrari, Nico Delhomme, Mikael Johansson, Johan Sjölander, Rajesh Kumar Singh, Marek Mutwil, Maria E Eriksson","doi":"10.1093/treephys/tpae139","DOIUrl":"10.1093/treephys/tpae139","url":null,"abstract":"<p><p>The boreal forest ecosystems of the northern hemisphere are dominated by conifers, of which Norway spruce (Picea abies [L.] H. Karst.) is one of the most common species. Due to its economic interest to the agroforestry industry, as well as its ecological significance, it is important to understand seasonal growth and biomass production in Norway spruce. Solid evidence that the circadian clock regulates growth in conifers has proved elusive, however, resulting in significant gaps in our knowledge of clock function in these trees. Here, we reassess the impact of the circadian clock on growth in Norway spruce. Using a combination of approaches monitoring the physiology of vegetative growth, transcriptomics and bioinformatics, we determined that the clock could be playing a decisive role in enabling growth, acting in specific developmental processes influenced by season and geographical location to guide bud burst and growth. Thus, the evidence indicates that there is time for spruce.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplast redox state mediates the short-term regulation of leaf isoprene emission. 叶绿体氧化还原状态介导叶片异戊二烯排放的短期调节。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-11-01 DOI: 10.1093/treephys/tpae142
Wen-Lin Wang, Yuan Yu, Huixing Kang, Yanrong Yang, Shao-Meng Li, Xiangyang Yuan, Yin Wang, Yanhong Tang
{"title":"Chloroplast redox state mediates the short-term regulation of leaf isoprene emission.","authors":"Wen-Lin Wang, Yuan Yu, Huixing Kang, Yanrong Yang, Shao-Meng Li, Xiangyang Yuan, Yin Wang, Yanhong Tang","doi":"10.1093/treephys/tpae142","DOIUrl":"https://doi.org/10.1093/treephys/tpae142","url":null,"abstract":"<p><p>Isoprene emission from plants not only confers thermoprotection, but also has profound impacts on atmospheric chemistry and the climate. Leaf isoprene emission is dynamically regulated in response to various environmental cues, but the exact mechanism remains unclear. It has been proposed that chloroplast redox/energy state or cytosolic phosphoenolpyruvate carboxylation regulates isoprene biosynthesis and consequently emission, and the latter has been disproven by recent literature. However, the possible covariation of chloroplast redox/energy state and cytosolic PEP carboxylation in previous experiments impedes the independent examination of the former hypothesis. We developed an index of chloroplast redox state and showed its validity by examining the relationships between the index and the rates of certain processes which have been demonstrated to be affected or unaffected by chloroplast redox/energy state. According to the former hypothesis alone, we modelled how isoprene emission rate (IER) responded to different short-term environmental variations, and compared theoretical predictions with experimental data. We predicted that no matter which environmental factor was varied, IER would respond to the index of chloroplast redox state with similar velocities. We found that IER showed comparable increasing rates in response to the increase in the index of chloroplast redox state caused by different environmental variations (0.0479, 0.0439 or 0.0319 when ambient CO2 concentration, photosynthetic photon flux density or leaf temperature was varied, respectively). These results support that chloroplast redox/energy state regulates isoprene biosynthesis, leading to dynamic isoprene emission in nature.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the existence of an osmotic barrier between xylem fibres and vessels in sugar maple (Acer saccharum) using microCT. 利用微型计算机断层扫描技术研究糖槭木质部纤维和血管之间是否存在渗透屏障。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-10-17 DOI: 10.1093/treephys/tpae134
James A Robinson, Matt Rennie, Mike J Clearwater, Daniel J Holland, Abby van den Berg, Matthew J Watson
{"title":"Investigating the existence of an osmotic barrier between xylem fibres and vessels in sugar maple (Acer saccharum) using microCT.","authors":"James A Robinson, Matt Rennie, Mike J Clearwater, Daniel J Holland, Abby van den Berg, Matthew J Watson","doi":"10.1093/treephys/tpae134","DOIUrl":"https://doi.org/10.1093/treephys/tpae134","url":null,"abstract":"<p><p>Sugar maples (Acer saccharum Marshall) develop elevated stem pressures in springtime through the compression and expansion of gas bubbles present within xylem fibres. The stability of this gas within the fibres is hypothesised to be due to the elevated sugar concentration of maple sap and the presence of an osmotic barrier between fibres and vessels. Without this osmotic barrier gas bubbles are predicted to dissolve rapidly. In this work we investigated the existence of this osmotic barrier. We quantified the fraction of the xylem occupied by gas-filled fibres using synchrotron based microCT. After imaging fresh stem segments we perfused them with either a 2% sucrose solution or water, imaging again following perfusion. In this way we directly observed how total gas present in the fibres changed when an osmotic pressure difference should be present, with the 2% sucrose solution, and when it is absent, with the water. Following a first round of perfusion we perfused stem segments with the other perfusate, repeating this multiple times to observe how switching perfusates affected gas-filled fibres. We found that perfusing stem segments with water resulted in a significant reduction in the xylem fibre gas, but perfusing stem segments with a sucrose solution did not significantly reduce the gas in the fibres. These results support the hypothesis that an osmotic barrier exists between fibres and vessels.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embolism propagation does not rely on pressure only: time-based shifts in xylem vulnerability curves of angiosperms determine the accuracy of the flow-centrifuge method. 栓子的传播并不仅仅依赖于压力:被子植物木质部易损性曲线的时间变化决定了流量离心法的准确性。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-10-10 DOI: 10.1093/treephys/tpae131
Luciano M Silva, Jonas Pfaff, Luciano Pereira, Marcela T Miranda, Steven Jansen
{"title":"Embolism propagation does not rely on pressure only: time-based shifts in xylem vulnerability curves of angiosperms determine the accuracy of the flow-centrifuge method.","authors":"Luciano M Silva, Jonas Pfaff, Luciano Pereira, Marcela T Miranda, Steven Jansen","doi":"10.1093/treephys/tpae131","DOIUrl":"https://doi.org/10.1093/treephys/tpae131","url":null,"abstract":"<p><p>Centrifuges provide a fast approach to quantify embolism resistance of xylem in vulnerability curves (VCs). Since embolism formation is assumingly driven by pressure only, spin time is not standardised for flow centrifuge experiments. Here, we explore to what extent embolism resistance could be spin-time dependent, and hypothesise that changes in hydraulic conductivity (Kh) would shift VCs towards higher water potential (Ψ) values over time. We quantified time-based shifts in flow-centrifuge VCs and their parameter estimations for six angiosperm species by measuring Kh over 15 minutes of spinning at a particular speed, before a higher speed was applied to the same sample. We compared various VCs per sample based on cumulative spin time, and modelled the relationship between Kh, Ψ, and spin-time. Time-based changes of Kh showed considerable increases and decreases at low and high centrifuge speeds, respectively, which generally shifted VCs towards more positive Ψ values. Values corresponding to 50% loss of hydraulic conductivity (P50) became less negative by up to 0.72 MPa in Acer pseudoplatanus, and on average by 8.5% for all six species compared to VCs that did not consider spin-time. By employing an asymptotic exponential model, we estimated time-stable Kh, which improved the statistical significance of VCs in 5 of the 6 species studied. This model also revealed the instability of VCs at short spin times with embolism formation in flow-centrifuges following a saturating exponential growth curve. Although pressure remains the major determinant of embolism formation, spin-time should be considered in flow-centrifuge VCs because not considering the time-dependent stability of Kh overestimates embolism resistance. This spin-time artefact is species-specific, and likely based on relatively slow gas diffusion that is associated with embolism propagation. The accuracy of VCs is improved by determining time-stable Kh values for each centrifuge speed, without considerably extending the experimental time to construct VCs.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting survival strategies for seedlings of two northern conifer species to extreme droughts and floods. 两种北方针叶树种的幼苗在极端干旱和洪水面前的生存策略截然不同。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-10-03 DOI: 10.1093/treephys/tpae117
Katlyn A Schulz, Alexandra M Barry, Laura S Kenefic, Jay W Wason
{"title":"Contrasting survival strategies for seedlings of two northern conifer species to extreme droughts and floods.","authors":"Katlyn A Schulz, Alexandra M Barry, Laura S Kenefic, Jay W Wason","doi":"10.1093/treephys/tpae117","DOIUrl":"10.1093/treephys/tpae117","url":null,"abstract":"<p><p>Lowland northern white-cedar (Thuja occidentalis L.) forests are increasingly exposed to extreme droughts and floods that cause tree mortality. However, it is not clear the extent to which these events may differentially affect regeneration of cedar and its increasingly common associate, balsam fir (Abies balsamea (L.) Mill.). To test this, we measured how seedlings of cedar and fir were able to avoid, resist and recover from experimental drought and flood treatments of different lengths (8 to 66 days). Overall, we found that cedar exhibited a strategy of stress resistance and growth recovery (resilience) from moderate drought and flood stress. Fir, on the other hand, appears to be adapted to avoid drought and flood stress and exhibited overall lower growth resilience. In drought treatments, we found evidence of different stomatal behaviors. Cedar used available water quickly and therefore experienced more drought stress than fir, but cedar was able to survive at water potentials > 3 MPa below key hydraulic thresholds. On the other hand, fir employed a more conservative water-use strategy and therefore avoided extremely low water potential. In response to flood treatments, cedar survival was higher and only reached 50% if exposed to 23.1 days of flooding in contrast to only 7.4 days to reach 50% mortality for fir. In both droughts and floods, many stressed cedar were able to maintain partially brown canopies and often survived the stress, albeit with reduced growth, suggesting a strategy of resistance and resilience. In contrast, fir that experienced drought or flood stress had a threshold-type responses and they either had full live canopies with little effect on growth or they died suggesting reliance on a strategy of drought avoidance. Combined with increasingly variable precipitation regimes, seasonal flooding and complex microtopography that can provide safe sites in these forests, these results inform conservation and management of lowland cedar stands.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142155042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信