栎根细呼吸与二维根系性状空间的经济权衡一致。

IF 3.5 2区 农林科学 Q1 FORESTRY
E L Shedd, M A Cavaleri, C Külheim, A J Burton
{"title":"栎根细呼吸与二维根系性状空间的经济权衡一致。","authors":"E L Shedd, M A Cavaleri, C Külheim, A J Burton","doi":"10.1093/treephys/tpaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Plant economic theory argues that growth strategies maximize either the rate or longevity of return per resource investment in a unidimensional trade-off. Belowground trade-offs may not mimic those aboveground due to soil resource heterogeneity, different physical constraints imposed by the shape of roots compared with leaves and fungal symbioses, and often multiple dimensions of variation are found. Root respiration represents a substantial carbon flux out of forest ecosystems, but its placement in these trade-offs is unclear, and its incorporation into carbon cycle models is limited by available data. Most research on root traits has focused on interspecific variability, but here, we investigated whether trade-offs among one species' populations align with those between species by sampling Quercus rubra (L.) populations along a Midwest, USA latitudinal gradient. Across populations, we assessed whether fine root traits follow uni- or multidimensional trade-offs and how these axes relate to root respiration. Respiration rates, morphological traits and root nitrogen were measured on excised fine roots at 14 sites, spanning a wide variety of environmental conditions, and then analyzed for trade-off axes. We uncovered substantial root trait variation among Q. rubra populations that aligned with two distinct trade-offs, one between branching intensity (BI) and average diameter and a second with root tissue density on one end and specific root length, root nitrogen concentration and root specific respiration (RSR) on the other. Reliance on ectomycorrhizal fungi, which colonize root tips, may be a possible explanation for the first axis, with higher BI representing more collaboration. Along the latter axis, RSR increased with root nitrogen concentration and decreased with root tissue density. These results support a similar bidimensional trait space between Q. rubra populations to that between species, with an economics trade-off that might be a useful predictor of the fine root respiration carbon flux.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine root respiration in Quercus rubra (L.) aligns with the economics trade-offs in bi-dimensional root trait space.\",\"authors\":\"E L Shedd, M A Cavaleri, C Külheim, A J Burton\",\"doi\":\"10.1093/treephys/tpaf024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant economic theory argues that growth strategies maximize either the rate or longevity of return per resource investment in a unidimensional trade-off. Belowground trade-offs may not mimic those aboveground due to soil resource heterogeneity, different physical constraints imposed by the shape of roots compared with leaves and fungal symbioses, and often multiple dimensions of variation are found. Root respiration represents a substantial carbon flux out of forest ecosystems, but its placement in these trade-offs is unclear, and its incorporation into carbon cycle models is limited by available data. Most research on root traits has focused on interspecific variability, but here, we investigated whether trade-offs among one species' populations align with those between species by sampling Quercus rubra (L.) populations along a Midwest, USA latitudinal gradient. Across populations, we assessed whether fine root traits follow uni- or multidimensional trade-offs and how these axes relate to root respiration. Respiration rates, morphological traits and root nitrogen were measured on excised fine roots at 14 sites, spanning a wide variety of environmental conditions, and then analyzed for trade-off axes. We uncovered substantial root trait variation among Q. rubra populations that aligned with two distinct trade-offs, one between branching intensity (BI) and average diameter and a second with root tissue density on one end and specific root length, root nitrogen concentration and root specific respiration (RSR) on the other. Reliance on ectomycorrhizal fungi, which colonize root tips, may be a possible explanation for the first axis, with higher BI representing more collaboration. Along the latter axis, RSR increased with root nitrogen concentration and decreased with root tissue density. These results support a similar bidimensional trait space between Q. rubra populations to that between species, with an economics trade-off that might be a useful predictor of the fine root respiration carbon flux.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf024\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

植物经济理论认为,在一种单维权衡中,增长战略使每项资源投资的回报率或回报寿命最大化。由于土壤资源的异质性、根与叶的形状所施加的不同物理约束以及真菌的共生关系,地下的权衡可能无法模仿地上的权衡,而且通常会发现多个维度的变化。根呼吸代表了森林生态系统中大量的碳通量,但它在这些权衡中的位置尚不清楚,并且将其纳入碳循环模型受到现有数据的限制。大多数关于根系性状的研究都集中在种间变异上,但在这里,我们通过沿着美国中西部的纬度梯度取样,研究了一个物种种群之间的权衡是否与种间的权衡一致。在种群中,我们评估了细根性状是否遵循单一或多维权衡,以及这些轴与根呼吸的关系。在不同的环境条件下,对14个地点切除的细根进行了呼吸速率、形态特征和根系氮含量的测定,并对权衡轴进行了分析。研究人员发现,在红栎种群中存在着显著的根系性状变异,这与两种不同的权衡相一致,一种是分支强度和平均直径之间的权衡,另一种是一端的根系组织密度和另一端的特定根长、根氮浓度和根特定呼吸作用。依赖于定植在根尖上的外生菌根真菌可能是第一根轴的一个可能的解释,分支强度越高代表更多的合作。根比呼吸随根氮浓度的增加而增加,随根组织密度的增加而降低。这些结果支持红桫椤种群之间与物种之间相似的二维性状空间,其经济学权衡可能是细根呼吸碳通量的有用预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine root respiration in Quercus rubra (L.) aligns with the economics trade-offs in bi-dimensional root trait space.

Plant economic theory argues that growth strategies maximize either the rate or longevity of return per resource investment in a unidimensional trade-off. Belowground trade-offs may not mimic those aboveground due to soil resource heterogeneity, different physical constraints imposed by the shape of roots compared with leaves and fungal symbioses, and often multiple dimensions of variation are found. Root respiration represents a substantial carbon flux out of forest ecosystems, but its placement in these trade-offs is unclear, and its incorporation into carbon cycle models is limited by available data. Most research on root traits has focused on interspecific variability, but here, we investigated whether trade-offs among one species' populations align with those between species by sampling Quercus rubra (L.) populations along a Midwest, USA latitudinal gradient. Across populations, we assessed whether fine root traits follow uni- or multidimensional trade-offs and how these axes relate to root respiration. Respiration rates, morphological traits and root nitrogen were measured on excised fine roots at 14 sites, spanning a wide variety of environmental conditions, and then analyzed for trade-off axes. We uncovered substantial root trait variation among Q. rubra populations that aligned with two distinct trade-offs, one between branching intensity (BI) and average diameter and a second with root tissue density on one end and specific root length, root nitrogen concentration and root specific respiration (RSR) on the other. Reliance on ectomycorrhizal fungi, which colonize root tips, may be a possible explanation for the first axis, with higher BI representing more collaboration. Along the latter axis, RSR increased with root nitrogen concentration and decreased with root tissue density. These results support a similar bidimensional trait space between Q. rubra populations to that between species, with an economics trade-off that might be a useful predictor of the fine root respiration carbon flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信