Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae171
Jean-Christophe Domec, Daniel M Johnson, Jennifer J Swenson
{"title":"A leaf-level field physiological tool linking non-invasive leaf gas exchange and chlorophyll fluorescence measurements applicable at larger ecophysiological scales.","authors":"Jean-Christophe Domec, Daniel M Johnson, Jennifer J Swenson","doi":"10.1093/treephys/tpae171","DOIUrl":"10.1093/treephys/tpae171","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpaf002
Fan Yang, Xuanhong Xie, Yu Zhao, Zetao Jin, Xianyu Pan, Zhenming Shen, Lin Hu, Xuejun Yu, Ji Feng Shao
{"title":"Silicon reduces lead accumulation in Moso bamboo via immobilization and suppression of metal cation transporter genes in roots.","authors":"Fan Yang, Xuanhong Xie, Yu Zhao, Zetao Jin, Xianyu Pan, Zhenming Shen, Lin Hu, Xuejun Yu, Ji Feng Shao","doi":"10.1093/treephys/tpaf002","DOIUrl":"10.1093/treephys/tpaf002","url":null,"abstract":"<p><p>Lead (Pb) is a hazardous element that affects the growth and development of plants, while silicon (Si) is a beneficial element for alleviating the stress caused by heavy metals, including Pb. However, the mechanisms by which Si reduces Pb accumulation in Moso bamboo (Phyllostachys edulis (Carr ·) H · de Lehaie) remain unclear. In this study, physiological assessments and transcriptome analyses were conducted to investigate the interaction between Si and Pb. Our findings showed that Si application has no significant effect on alleviating Pb-induced inhibition of root elongation and dry weight in short-term and long-term experiments, respectively. However, it did rescue leaf yellowing and reduce Pb accumulation, particularly in the shoot. Pre-treatment with Si led to a reduction in Pb uptake, translocation and accumulation, coupled with an increase in Pb fixation within the hemicellulose of the root cell wall, resulting in a lower Pb concentration in the cell sap. At the cellular level, Pb was found to be distributed in all cells of roots, and Si pretreatment did not alter Pb distribution. Additionally, Si application downregulated the expression of genes related to ABC and metal cation transporters. These findings indicate that Si reduces Pb accumulation in Moso bamboo by immobilizing Pb in the hemicellulose of root cell walls and downregulating the expression of transporter genes involved in Pb uptake and transport.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae158
Stefano Martinetti, Peter Molnar, Andrea Carminati, Marius G Floriancic
{"title":"Contrasting the soil-plant hydraulics of beech and spruce by linking root water uptake to transpiration dynamics.","authors":"Stefano Martinetti, Peter Molnar, Andrea Carminati, Marius G Floriancic","doi":"10.1093/treephys/tpae158","DOIUrl":"10.1093/treephys/tpae158","url":null,"abstract":"<p><p>Tree water status is mainly determined by the amount of water taken up from roots and lost through leaves by transpiration. Variations in transpiration and stomatal conductance are often related to atmospheric conditions and leaf water potential. Yet, few experimental datasets exist that enable to relate leaf water potential, transpiration dynamics and temporal variation of root water uptake from different depths during soil drying. Here we explored the soil-plant hydraulic system using field measurements of water potentials and fluxes in soils, roots, stems and leaves of beech (Fagus sylvatica) and spruce (Picea abies) trees. Spruce maintained less negative water potentials than beech during soil drying, reflecting a more stringent stomatal control. While root water uptake depths were similar between species, water potentials in plant tissues of spruce were rather constant and less correlated across roots and the stem, possibly because of large water storage and hydraulic capacitance in these tissues. Root water uptake from deep soil layers increased during dry periods, particularly for beech. Our data suggest that species-specific root hydraulic conductance, capacitance and water uptake strategy are linked and affect transpiration dynamics. Thus, it is important to include such species-specific hydraulics when predicting transpiration rates based on plant water status.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae169
Peter Högberg, Christian Klatt, Oskar Franklin, Nils Henriksson, Hyungwoo Lim, Erich Inselsbacher, Vaughan Hurry, Torgny Näsholm, Mona N Högberg
{"title":"Improved methodology for tracing a pulse of 13C-labelled tree photosynthate carbon to ectomycorrhizal roots, other soil biota and soil processes in the field.","authors":"Peter Högberg, Christian Klatt, Oskar Franklin, Nils Henriksson, Hyungwoo Lim, Erich Inselsbacher, Vaughan Hurry, Torgny Näsholm, Mona N Högberg","doi":"10.1093/treephys/tpae169","DOIUrl":"10.1093/treephys/tpae169","url":null,"abstract":"<p><p>Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to below-ground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated below-ground by un-labelled trees. We describe a method which combines a high level of labelling at ambient concentrations of CO2, [CO2], with undisturbed root systems and a model to account for root C and root-derived C from un-labelled trees. We raised 5-m-tall chambers, each covering 50 m2 of ground (volume 250 m3) in a young boreal Pinus sylvestris L. forest with up to 5 m tall trees. Rather than a conventional single release of 13CO2, we used five consecutive releases, each followed by a draw-down period, thus avoiding high [CO2]. Hence, we elevated successively the 13CO2 from 1.1 to 23 atom% after the first release to 61 atom% after the fifth, while maintaining [CO2] below 500 p.p.m. during 4-4.5 h of labelling. The average abundance of 13CO2 was as high as 42 atom%. We used the central 10 m2 of the 50 m2 area for sampling of roots and other soil biota. We modelled the dilution of labelled C across the plots by un-labelled C from roots of trees outside the area. In the central 10 m2 area, ~85% of roots and root-associated biota received C from labelled trees. In summary, we elevated the labelling of roots and associated soil biota four-fold compared with previous studies and described the commonly overlooked impact of roots from un-labelled trees outside the labelled area.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local conditions have greater influence than provenance on sugar maple (Acer saccharum Marsh.) frost hardiness at its northern range limit.","authors":"Claudio Mura, Guillaume Charrier, Valentina Buttò, Sylvain Delagrange, Yann Surget-Groba, Patricia Raymond, Sergio Rossi, Annie Deslauriers","doi":"10.1093/treephys/tpae167","DOIUrl":"10.1093/treephys/tpae167","url":null,"abstract":"<p><p>In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate. We investigate the effect of local conditions and intra-specific variation on frost hardiness in sugar maple (Acer saccharum Marsh.). Seedlings belonging to seven provenances from the northern area of the species' range were planted at two sites in Quebec, Canada. LT50, i.e. the lethal temperature for 50% of the cells, was measured monthly with the relative electrolyte leakage method on branches and buds from September 2021 to July 2022. LT50 varied between -4 °C in summer (July) and -68 °C in winter (February). Autumnal acclimation rates (September to early December) and mid-winter frost hardiness (December to early March) were similar in both sites. Samples in the southern site deacclimated faster than in the northern site between March and July because of a warmer and earlier spring. No difference in frost hardiness was detected between provenances. Our results suggest that the frost hardiness trait is similar within the northern part of the sugar maple distribution, with local weather conditions having a greater influence than provenance. We demonstrate that LT50 in sugar maple can exceed -55 °C, far below the minimum temperatures occurring in winter at the northern limit of the species. In order to minimize the risk of damage from extreme frost events exceeding tree frost hardiness, a careful evaluation of site characteristics is more important than provenance selection. Other factors should also be considered within the context of changing climate, in particular, the phenology of maple and avoidance of late frost in spring.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae166
Shufeng Wang, Tao Wang, Lan Gao, Hongxia Du, Dingyong Wang, Ming Ma, Heinz Rennenberg
{"title":"Iron addition promotes mercury removal from soil by Robinia pseudoacacia-rhizobia symbiosis.","authors":"Shufeng Wang, Tao Wang, Lan Gao, Hongxia Du, Dingyong Wang, Ming Ma, Heinz Rennenberg","doi":"10.1093/treephys/tpae166","DOIUrl":"10.1093/treephys/tpae166","url":null,"abstract":"<p><p>Iron plaques on the root surface can promote or inhibit the absorption and accumulation of heavy metals by plants. However, the mechanism by which iron regulates the response of Robinia pseudoacacia to mercury (Hg) has not been elucidated, which hinders its application in divalent Hg (Hg2+) removal from Hg-contaminated soil. In this study, association analyses between transcriptome and metabolome were used to investigate effects of iron on the rhizosphere microenvironment and performance of R. pseudoacacia to assess its potential for Hg2+ removal. The results showed that the addition of 10 mg kg-1 iron significantly increased the development of iron plaques on the root surface and reduced the secretion of low-molecular-weight organic acids by roots, thereby changing rhizosphere soil characteristics and decreasing total Hg in roots. In addition, the secretion of choline supported signal transduction and enhanced the interaction between R. pseudoacacia and rhizobia, thereby inducing resistance to Hg2+. Anti-oxidative enzyme activities were increased and Hg2+ exposure of plants was reduced. Enhanced Hg2+ resistance was indicated by improved photosynthesis and growth, despite promoted xylem loading and transport of Hg2+, resulting in its accumulation in aboveground tissues, which is essential for Hg2+ removal. These results indicate that iron addition has a great potential to improve the growth of R. pseudoacacia in Hg-contaminated soil and promote the accumulation of Hg2+ in aboveground tissues for phytoremediation approaches.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae172
A T Trugman, B Morgan, G Vargas G
{"title":"The impacts of compounding droughts: scaling from stomatal responses to ecosystem dynamics.","authors":"A T Trugman, B Morgan, G Vargas G","doi":"10.1093/treephys/tpae172","DOIUrl":"10.1093/treephys/tpae172","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae152
Baoguo Du, Tobias Frühbrodt, Horst Delb, Tim Burzlaff, Peter H W Biedermann, Jürgen Kreuzwieser
{"title":"Emission patterns of volatile organic compounds from Norway spruce logs following bark beetle (Ips typographus L.) infestation.","authors":"Baoguo Du, Tobias Frühbrodt, Horst Delb, Tim Burzlaff, Peter H W Biedermann, Jürgen Kreuzwieser","doi":"10.1093/treephys/tpae152","DOIUrl":"10.1093/treephys/tpae152","url":null,"abstract":"<p><p>Norway spruce (Picea abies L.) is economically one of the most important conifer species in Europe. Spruce forests are threatened by outbreaks of the bark beetle Ips typographus L., and this will worsen with a projected warmer and drier climate and increased outbreak dynamic following storms. Volatile terpenes and aromatics play pivotal roles in defence of trees, however little is known about the emission dynamics of these compounds from trees colonized with I. typographus, particularly in dependence on the beetle's developmental stages and colonization densities. Here, we analysed the emission profiles of volatile organic compounds (VOCs) from spruce logs colonized with low (LDT) and high (HDT) densities of I. typographus from the initial colonization until the emergence of the next beetle generation. A first VOCs emission peak appeared directly after colonization and lasted for 1 week. It mainly consisted of monoterpenoids and most likely reflected the trees' constitutive defence against herbivory. Under HDT, a second emission maximum occurred during the larval stage, whereas under LDT a second peak appeared later during maturation feeding of callow beetles. In contrast to the first peak, sesquiterpenoids, aromatics and oxygenated monoterpenoids dominated the second peak, possibly reflecting the trees' induced defence. Developing beetles seem to face a variety of defence compounds even if the tree has been overwhelmed and colonization by parental beetles was already successful. The specific release patterns under LDT and HDT might be due to different availability of precursor compounds, depletion of constitutively stored compounds and differences in microbial activities associated with the bark beetles. The present study highlights constitutive defence of spruce trees upon herbivore attack, and the effect of infestation density on the temporal dynamics of induced defence. Particularly the oxygenated monoterpenoid terpinen-4-ol may be used as cue to assess habitat quality and competition by newly arriving beetles.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2025-01-25DOI: 10.1093/treephys/tpae154
Jonathan M Kressuk, James T Collins, Emile S Gardiner, Mohammad M Bataineh, Benjamin A Babst
{"title":"Willow oak (Quercus phellos) seedling roots continue respiration and growth during fall and winter in a soil temperature-dependent manner.","authors":"Jonathan M Kressuk, James T Collins, Emile S Gardiner, Mohammad M Bataineh, Benjamin A Babst","doi":"10.1093/treephys/tpae154","DOIUrl":"10.1093/treephys/tpae154","url":null,"abstract":"<p><p>Many greentree reservoirs (GTRs) and other bottomland hardwood forests have experienced a shift in tree species composition away from desired red oaks (Quercus section Lobatae), like willow oak (Quercus phellos L.), due to flood stress mortality. Trees experience flood stress primarily through their root system, so it is surmised that GTR flooding may be occurring before root systems have reduced their activity entering the winter. Because soils buffer seasonal temperature changes, we hypothesized that root activity would respond to the belowground environment rather than the aboveground environment. To investigate whether cold soil temperatures reduce root growth and respiration in willow oak during winter, soil temperatures for container seedlings were either held at 15 °C or transitioned to 10 or 5 °C in the late fall. Root elongation was measured in seedlings grown in rhizotron pots by analyzing repeated images of roots during the fall-winter transition period. Root respiration, measured at soil temperature levels, was used as an indicator of root energetic expenses. Also, root respiration was measured at 15 and 5 °C to determine Q10 values to test for acclimation to low soil temperature. Root elongation continued in winter, even after stem elongation stopped in soil temperatures ≥5 °C, a condition usually met throughout most of the native range of willow oak. Both root elongation and respiration rates decreased in cooler soil temperatures. However, Q10 values were unaffected by soil temperature treatment. These findings do not support root dormancy or cold acclimation of root respiratory activity but indicate that temperature directly and reversibly affected root respiration rate. Root elongation may have been dependent on photoassimilates produced by green leaves that were retained through much of winter. Overall, our results suggest that willow oak roots may continue a high rate of growth throughout winter, unlike most temperate species measured to date, and that soil temperature has a major influence over their growth and respiration rates.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-12-25DOI: 10.1093/treephys/tpad115
Samuel C Harbol, Randall W Long, Juliana S Medeiros
{"title":"Juniperus virginiana sourced from colder climates maintain higher ratios of soluble sugars to starch during cold acclimation.","authors":"Samuel C Harbol, Randall W Long, Juliana S Medeiros","doi":"10.1093/treephys/tpad115","DOIUrl":"10.1093/treephys/tpad115","url":null,"abstract":"<p><p>Nonstructural carbohydrates (NSCs) are carbon compounds that serve a large variety of purposes, which makes it hard to disentangle how their concentrations change in response to environmental stress. Soluble sugars can accumulate in plants as metabolic demand decreases, e.g., in response to drought or as seasonal temperatures decrease. Alternatively, actively allocating to NSCs could be beneficial in cold acclimation (CA) or in periods of increased aridity because soluble sugars serve non-metabolic functions as cryoprotectants and in osmoregulation. We used Juniperus virginiana L., a woody plant currently expanding its range, to investigate whether plants sourced from colder and more arid locations maintained higher concentrations of NSCs. We sourced three populations of J. virginiana from across an environmental gradient, and we compared these with the closely related Juniperus scopulorum Sarg. We grew the plants in a common garden in north-east OH, part of J. virginiana's historic range. We exposed the plants to a drought treatment during the summer and then measured the NSC concentrations and cold-hardiness as the plants acclimated to colder temperatures and shorter days. We found that individuals originating from the warmer, more southern range edge were initially not as cold-hardy as plants from the other source populations and that they only reached similar hardiness after prolonged low temperatures. We did not find an effect of drought on NSCs, although this may be due to other traits conferring a high level of drought tolerance in J. virginiana. Across all plants, the NSC concentration increased over the CA period, specifically as sugars. Although the highest concentrations of sugars were found in plants from southern populations, the plants from colder environments maintained higher sugar-to-starch ratios. These results highlight the importance of NSCs in CA and that plants sourced from different climates showed different physiological responses to shortening days and low temperatures.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":"106-118"},"PeriodicalIF":3.5,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}