Tree physiology最新文献

筛选
英文 中文
Xylem sap residue in cut-open conduits can affect gas discharge in pneumatic experiments. 切口导管中的木质部树液残留会影响气动实验中的气体排放。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-24 DOI: 10.1093/treephys/tpae092
Marcela T Miranda, Luciano Pereira, Gabriel S Pires, Xinyi Guan, Luciano M Silva, Swetlana Kreinert, Eduardo C Machado, Steven Jansen, Rafael V Ribeiro
{"title":"Xylem sap residue in cut-open conduits can affect gas discharge in pneumatic experiments.","authors":"Marcela T Miranda, Luciano Pereira, Gabriel S Pires, Xinyi Guan, Luciano M Silva, Swetlana Kreinert, Eduardo C Machado, Steven Jansen, Rafael V Ribeiro","doi":"10.1093/treephys/tpae092","DOIUrl":"https://doi.org/10.1093/treephys/tpae092","url":null,"abstract":"<p><p>Considerable attention has been paid to address methodological concerns related to measurements of embolism in conduits of angiosperm xylem. A fast, easy, and cheap method is based on gas extraction measurements from dehydrating samples to obtain pneumatic vulnerability curves (VCs). Here, we tested the assumption that cutting open conduits leads to gas-filled lumina when these are cut in air at fairly high water potentials, which is required to detect embolism in intact conduits. We performed VCs with the Pneumatron for 12 angiosperm species, and extracted sap from cut-open vessels in branches of nine species under early stages of branch dehydration. The optical method was applied to Citrus plants as an alternative reference method to estimate embolism resistance. We found an increase in gas discharge during early stages of dehydration, which affected the pneumatic VCs for most of the species studied. Xylem sap residue was not absorbed immediately by surrounding tissue in cut-open conduits in six of the nine species, but gradually disappeared over time during progressive dehydration. The amount of gas discharged increased until all residual sap was absorbed, and was not related to embolism. We conclude that residual xylem sap in cut-open conduits affects early stages of pneumatic VCs, and represents a novel artefact that can easily be corrected for. Yet, it remains unclear why exactly the air-water meniscus in cut-open conduits did not fully withdraw to the conduit end wall in most species. By analysing the slope of VCs over time, we could improve estimations of embolism resistance, as evidenced by a strong agreement between the pneumatic and the optical methods. Since residual sap in cut-open conduits of some species could slightly underestimate embolism resistance, we propose to apply a correction for this artefact based on the high time resolution measurements taken with a Pneumatron.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis. 人工管理与自然环境的博弈决定了沙棘叶片形态发生的适应策略。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae060
Jing Jia, Guojuan Qu, Peng Jia, Dezhi Li, Yifei Yao
{"title":"The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis.","authors":"Jing Jia, Guojuan Qu, Peng Jia, Dezhi Li, Yifei Yao","doi":"10.1093/treephys/tpae060","DOIUrl":"10.1093/treephys/tpae060","url":null,"abstract":"<p><p>Sabina chinensis is a typically heteromorphic leaf evergreen tree worldwide with both ornamental and ecological value. However, the shaping mechanism of heteromorphic leaves of S. chinensis and its adaptability to environment are important factors determining its morphology. The morphological change of S. chinensis under different habitats (tree around) and treatments (light, pruning and nutrients) was investigated. Our findings suggested that the prickle leaves proportion was associated with low light intensity and soil nutrient scarcity. Stems and leaves are pruned together to form clusters of large prickle leaves, while only pruning leaves often form alternately growing small prickle leaves and scale leaves, and the length of the prickle leaves is between 0.5 cm and 1 cm. The gene expression of prickle leaves is higher than that of scale leaves under adverse environmental conditions, and the gene expression correlations between small prickle leaf and scale leaf were the highest. Homologous and heterologous mutants of gene structure in prickle leaves were larger than those in scale leaves. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that phenylpropanone and flavonoid biosynthesis were common enrichment pathways, and that the enrichment genes were mainly related to metabolism, genetic information processing and organismal systems. Therefore, we concluded that the occurrence of the heteromorphic leaf phenomenon was related to the changes in photosynthesis, mechanical damage and nutrient supplementation. The organic matter in the S. chinensis prickle leaves was reduced under environmental stresses, and it will be allocated to the expression of prickle leaf or protective cuticles formation.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree mortality after a spring fire: the role of reduced live leaf area in depletion of early growing season bole NSC. 春季火灾后树木的死亡:活叶面积的减少对早期生长季节树干 NSC 的消耗所起的作用。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae063
L Turin Dickman
{"title":"Tree mortality after a spring fire: the role of reduced live leaf area in depletion of early growing season bole NSC.","authors":"L Turin Dickman","doi":"10.1093/treephys/tpae063","DOIUrl":"10.1093/treephys/tpae063","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species. 更正:漫射辐射和叶片湿度对云雾林物种功能特征和蒸腾效率的综合影响
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae091
{"title":"Correction to: The combined effect of diffuse radiation and leaf wetness on functional traits and transpiration efficiency on a cloud forest species.","authors":"","doi":"10.1093/treephys/tpae091","DOIUrl":"https://doi.org/10.1093/treephys/tpae091","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tip-to-base conduit widening remains consistent across cambial age and climates in Fagus sylvatica L. 在不同树龄和气候条件下,Fagus sylvatica L.从顶端到基部的导管加宽保持一致。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae080
Angelo Rita, Osvaldo Pericolo, Jan Tumajer, Francesco Ripullone, Tiziana Gentilesca, Antonio Saracino, Marco Borghetti
{"title":"Tip-to-base conduit widening remains consistent across cambial age and climates in Fagus sylvatica L.","authors":"Angelo Rita, Osvaldo Pericolo, Jan Tumajer, Francesco Ripullone, Tiziana Gentilesca, Antonio Saracino, Marco Borghetti","doi":"10.1093/treephys/tpae080","DOIUrl":"10.1093/treephys/tpae080","url":null,"abstract":"<p><p>Water transport, mechanical support and storage are the vital functions provided by the xylem. These functions are carried out by different cells, exhibiting significant anatomical variation not only within species but also within individual trees. In this study, we used a comprehensive dataset to investigate the consistency of predicted hydraulic vessel diameter widening values in relation to the distance from the tree apex, represented by the relationship Dh ∝ Lβ (where Dh is the hydraulic vessel diameter, L the distance from the stem apex and β the scaling exponent). Our analysis involved 10 Fagus sylvatica L. trees sampled at two distinct sites in the Italian Apennines. Our results strongly emphasize that vessel diameter follows a predictable pattern with the distance from the stem apex and β ~ 0.20 remains consistent across cambial age and climates. This finding supports the hypothesis that trees do not alter their axial configuration represented by scaling of vessel diameter to compensate for hydraulic limitations imposed by tree height during growth. The study further indicates that within-tree variability significantly contributes to the overall variance of the vessel diameter-stem length exponent. Understanding the factors that contribute to the intraindividual variability in the widening exponent is essential, particularly in relation to interspecific responses and adaptations to drought stress.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis. 木质部细胞大小调节是桉树对缺水的一个关键适应性反应。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae068
Rafael Keret, David M Drew, Paul N Hills
{"title":"Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis.","authors":"Rafael Keret, David M Drew, Paul N Hills","doi":"10.1093/treephys/tpae068","DOIUrl":"10.1093/treephys/tpae068","url":null,"abstract":"<p><p>Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation of tonoplast sucrose transport alters carbohydrate utilization for seasonal growth and defense metabolism in coppiced poplar. 色质体蔗糖转运的干扰改变了毛白杨季节性生长和防御新陈代谢对碳水化合物的利用。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae061
Trevor T Tuma, Batbayar Nyamdari, Chen Hsieh, Yen-Ho Chen, Scott A Harding, Chung-Jui Tsai
{"title":"Perturbation of tonoplast sucrose transport alters carbohydrate utilization for seasonal growth and defense metabolism in coppiced poplar.","authors":"Trevor T Tuma, Batbayar Nyamdari, Chen Hsieh, Yen-Ho Chen, Scott A Harding, Chung-Jui Tsai","doi":"10.1093/treephys/tpae061","DOIUrl":"10.1093/treephys/tpae061","url":null,"abstract":"<p><p>Nonstructural carbohydrate reserves of stems and roots underpin overall tree fitness and productivity under short-rotation management practices such as coppicing for bioenergy. While sucrose and starch comprise the predominant stem carbohydrate reserves of Populus, utilization for fitness and agricultural productivity is understood primarily in terms of starch turnover. The tonoplast sucrose transport protein SUT4 modulates sucrose export from source leaves to distant sinks during photoautotrophic growth, but the possibility of its involvement in remobilizing carbohydrates from storage organs during heterotrophic growth has not been explored. Here, we used PtaSUT4-knockout mutants of Populus tremula × P. alba (INRA 717-1B4) in winter (cool) and summer (warm) glasshouse coppicing experiments to assess SUT4 involvement in reserve utilization. Conditions preceding and supporting summer sprouting were considered favorable for growth, while those preceding and supporting cool temperature sprouting were suboptimal akin to conditions associated with coppicing as generally practiced. Epicormic bud emergence was delayed in sut4 mutants following lower temperature 'winter' but not summer coppicing. Winter xylem hexose increases were observed in control but not in sut4 stumps after coppicing. The magnitude of starch and sucrose reserve depletion was similar in control and sut4 stumps during the winter and did not explain the sprouting and xylem hexose differences. However, winter maintenance costs appeared higher in sut4 based partly on Krebs cycle intermediate levels. In control plants, bark accrual of abundant defense metabolites, including salicinoids and condensed tannins, was higher in summer than in winter, but this increase of summer defense allocations was attenuated in sut4 mutants. Temperature-sensitive trade-offs between growth and other priorities may therefore depend on SUT4 in Populus.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linkages between stem vulnerability curves and tree demography and their implications for plant physiological modeling. 茎干脆弱性曲线与树木形态之间的联系及其对植物生理建模的影响。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae078
Chaoqing Song, Yangyang Fu, Shidan Zhu, Wenfang Xu, Qing Ye, Wenping Yuan
{"title":"Linkages between stem vulnerability curves and tree demography and their implications for plant physiological modeling.","authors":"Chaoqing Song, Yangyang Fu, Shidan Zhu, Wenfang Xu, Qing Ye, Wenping Yuan","doi":"10.1093/treephys/tpae078","DOIUrl":"10.1093/treephys/tpae078","url":null,"abstract":"<p><p>Vulnerability curves (VCs) have been measured extensively to describe the differences in plant vulnerability to cavitation. Although the roles of hydraulic conductivity (Ks,max) and hydraulic safety (P50, embolism resistance), both of which are parameters of VCs ('sigmoidal' type), in tree demography have been evaluated across different forests, the direct linkages between VCs and tree demography are rarely explored. In this study, we combined measured VCs and plot data of 16 tree species in Panamanian seasonal tropical forests to investigate the connections between VCs and tree mortality, recruitment and growth. We found that the mortality and recruitment rates of evergreen species were most significantly positively correlated with P50. However, the mortality and recruitment rates of deciduous species only exhibited significant positive correlations with parameter a, which describes the steepness of VCs and indicates the sensitivity of conductivity loss with water potential decline, but is often neglected. These differences among evergreen and deciduous species may contribute to the poor performance of existing quantitative relationships (such as the fitting relationships for all 16 species) in capturing tree mortality and recruitment dynamics. Additionally, evergreen species presented a significant positive relationship between relative growth rate (RGR) and Ks,max, while deciduous species did not display such relationship. The RGR of both evergreen and deciduous species also displayed no significant correlations with P50 and a. Further analysis demonstrated that species with steeper VCs tended to have high mortality and recruitment rates, while species with flatter VCs were usually those with low mortality and recruitment rates. Our results highlight the important role of parameter a in tree demography, especially for deciduous species. Given that VC is a key component of plant hydraulic models, integrating measured VC rather than optimizing its parameters will help improve the ability to simulate and predict forest response to water availability.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-isotope analysis in tree-ring cellulose suggests only moderate effects of tree species mixture on the climate sensitivity of silver fir and Douglas-fir. 树环纤维素中的三重同位素分析表明,树种混杂对银冷杉和花旗松的气候敏感性影响不大。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae067
Justine Charlet de Sauvage, Kerstin Treydte, Matthias Saurer, Mathieu Lévesque
{"title":"Triple-isotope analysis in tree-ring cellulose suggests only moderate effects of tree species mixture on the climate sensitivity of silver fir and Douglas-fir.","authors":"Justine Charlet de Sauvage, Kerstin Treydte, Matthias Saurer, Mathieu Lévesque","doi":"10.1093/treephys/tpae067","DOIUrl":"10.1093/treephys/tpae067","url":null,"abstract":"<p><p>Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of heaping-induced decline in olive quality: insights from integrated analysis between phenotypic traits and gene expression profiles. 分析堆放导致的橄榄品质下降:表型特征与基因表达谱综合分析的启示。
IF 3.5 2区 农林科学
Tree physiology Pub Date : 2024-07-02 DOI: 10.1093/treephys/tpae066
Chenhe Wang, Qizhen Cui, Qingqing Liu, Yutong Fan, Qiaohua Li, Min Zhao, Liangmei Zhao, Jianguo Zhang, Guodong Rao
{"title":"Analysis of heaping-induced decline in olive quality: insights from integrated analysis between phenotypic traits and gene expression profiles.","authors":"Chenhe Wang, Qizhen Cui, Qingqing Liu, Yutong Fan, Qiaohua Li, Min Zhao, Liangmei Zhao, Jianguo Zhang, Guodong Rao","doi":"10.1093/treephys/tpae066","DOIUrl":"10.1093/treephys/tpae066","url":null,"abstract":"<p><p>Heaping is an unavoidable process before olive milling, and its duration significantly affects the olive quality. However, there is limited research on the quality changes of olive fruits on a short-time scale. To gain a better understanding of the molecular mechanisms underlying postharvest deterioration of olives, this study piled olives at room temperature and extracted oil at 0, 8, 24, 48 and 72 h to analyze oil quality parameters. Gas/Liquid Chromatography-Mass Spectrometry (GC/LC-MS) techniques were employed to investigate variations in metabolite contents. Concurrently, the transcriptional profiles of olives during heaping were examined. As piling time progressed, quality indicators declined, and stored fruit were categorized into three groups based on their quality characters: '0 h' belongs to the first category, '8 h' and '24 h' to the second category, and '48 h' and '72 h' to the third category. Metabolite changes were consistent with the expression patterns of genes related to their synthesis pathways. Additionally, ethylene was identified as a crucial factor influencing fruit senescence. These findings establish a foundation for further research on olive deterioration after harvesting and offer insights for optimizing olive oil production.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信