Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae112
Anton Milyaev, Ute Born, Elke Sprich, Michael Hagemann, Henryk Flachowsky, Eike Luedeling
{"title":"Identifying indicators of apple bud dormancy status by exposure to artificial forcing conditions.","authors":"Anton Milyaev, Ute Born, Elke Sprich, Michael Hagemann, Henryk Flachowsky, Eike Luedeling","doi":"10.1093/treephys/tpae112","DOIUrl":"10.1093/treephys/tpae112","url":null,"abstract":"<p><p>Dormancy in temperate fruit trees is a mechanism of temporary growth suspension, which is vital for tree survival during winter. Studies on this phenomenon frequently employ scientific methods that aim to detect the timing of dormancy release. Dormancy release occurs when trees have been exposed to sufficient chill, allowing them to resume growth under conducive conditions. This study investigates dormancy dynamics in two apple (Malus × domestica Borkh.) cultivars, 'Nicoter' and 'Topaz', by sampling branches in an orchard over 14 weeks (2019 to 2020) and over 31 weeks (2021 to 2022) and subjecting them to a 42-day budbreak forcing period in a growth chamber. Temporal changes in budbreak percentages demonstrated dormancy progression in the studied apple cultivars and allowed the three main dormancy phases to be distinguished: paradormancy (summer dormancy), endodormancy (deep dormancy) and ecodormancy (spring dormancy), along with transition periods between them. Using these data, we explored the suitability of several alternative methods to determine endodormancy release. Tabuenca's test, which predicts dormancy release based on the differences in dry weights of buds with and without forcing, showed promise for this purpose. However, our data indicated a need for considerable adjustments and validation of this test. Bud weight and water content of buds in the orchard did not align with budbreak percentages under forcing conditions, rendering them unsuitable for determining endodormancy release in 'Nicoter' and 'Topaz'. Shoot growth cessation did not seem to be connected with either dormancy progression or dormancy depth of the studied cultivars, whereas leaf fall coincided with the beginning of the transition from endo- to ecodormancy. This work addresses methodological limitations in dormancy research and suggests considering the mean time to budbreak and budbreak synchrony as additional criteria to assess tree dormancy status.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae110
Ana Maria Restrepo-Acevedo, Jessica S Guo, Steven A Kannenberg, Michael C Benson, Daniel Beverly, Renata Diaz, William R L Anderegg, Daniel M Johnson, George Koch, Alexandra G Konings, Lauren E L Lowman, Jordi Martínez-Vilalta, Rafael Poyatos, H Jochen Schenk, Ashley M Matheny, Katherine A McCulloh, Jesse B Nippert, Rafael S Oliveira, Kimberly Novick
{"title":"PSInet: a new global water potential network.","authors":"Ana Maria Restrepo-Acevedo, Jessica S Guo, Steven A Kannenberg, Michael C Benson, Daniel Beverly, Renata Diaz, William R L Anderegg, Daniel M Johnson, George Koch, Alexandra G Konings, Lauren E L Lowman, Jordi Martínez-Vilalta, Rafael Poyatos, H Jochen Schenk, Ashley M Matheny, Katherine A McCulloh, Jesse B Nippert, Rafael S Oliveira, Kimberly Novick","doi":"10.1093/treephys/tpae110","DOIUrl":"10.1093/treephys/tpae110","url":null,"abstract":"<p><p>Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are as follows. (i) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (ii) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (iii) Standardizing methodologies, processing and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices and early career training opportunities. (iv) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae114
Christina A Hackmann, Holger Sennhenn-Reulen, Martina Mund, Christian Ammer
{"title":"Local neighborhood affects stem rehydration under drought: evidence from mixtures of European beech with two different conifers.","authors":"Christina A Hackmann, Holger Sennhenn-Reulen, Martina Mund, Christian Ammer","doi":"10.1093/treephys/tpae114","DOIUrl":"10.1093/treephys/tpae114","url":null,"abstract":"<p><p>Mixed-species forests are, for multiple reasons, promising options for forest management in Central Europe. However, the extent to which interspecific competition affects tree hydrological processes is not clear. High-resolution dendrometers capture subdaily variations in stem diameter; they can simultaneously monitor stem growth (irreversible changes in diameter) and water status (reversible changes) of individual trees. Using the information on water status, we aimed to assess potential effects of tree species mixture, expressed as local neighborhood identity, on night-time rehydration and water stress. We deployed 112 sensors in pure and mixed forest stands of European beech, Norway spruce and Douglas fir on four sites in the northwestern Germany, measuring stem diameter in 10-min intervals for a period of four years (2019-2022). In a mixture distribution model, we used environmental variables, namely soil matric potential, atmospheric vapor pressure deficit, temperature, precipitation and neighborhood identity to explain night-time rehydration, measured as the daily minimum tree water deficit (TWDmin). TWDmin was used as a daily indicator of water stress and the daily occurrence of sufficient water supply, allowing for stem growth (potential growth). We found that species and neighborhood identity affected night-time rehydration, but the impacts varied depending on soil water availability. While there was no effect at high water availability, increasing drought revealed species-specific patterns. Beech improved night-time rehydration in mixture with Douglas fir, but not in mixture with spruce. Douglas fir, however, only improved rehydration at a smaller share of beech in the neighborhood, while beech dominance tended to reverse this effect. Spruce was adversely affected when mixed with beech. At species level and under dry conditions, we found that night-time rehydration was reduced in all species, but beech had a greater capacity to rehydrate under high to moderate soil water availability than the conifers, even under high atmospheric water demand. Our study gives new insights into neighborhood effects on tree water status and highlights the importance of species-specific characteristics for tree-water relations in mixed-species forests. It shows that drought stress of European beech can be reduced by admixing Douglas fir, which may point towards a strategy to adapt beech stands to climate change.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142155045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae133
Maurizio Mencuccini
{"title":"Downscaling investigations in Tree Physiology: mechanisms and context.","authors":"Maurizio Mencuccini","doi":"10.1093/treephys/tpae133","DOIUrl":"10.1093/treephys/tpae133","url":null,"abstract":"","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae118
Haoyu Diao, Jiabing Wu
{"title":"Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest.","authors":"Haoyu Diao, Jiabing Wu","doi":"10.1093/treephys/tpae118","DOIUrl":"10.1093/treephys/tpae118","url":null,"abstract":"<p><p>The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142155044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae120
Toky Jeriniaina Rabearison, Vincent Poirier, Jérôme Laganière, Annie DesRochers
{"title":"How is tree growth rate linked to root functional traits in phylogenetically related poplar hybrids?","authors":"Toky Jeriniaina Rabearison, Vincent Poirier, Jérôme Laganière, Annie DesRochers","doi":"10.1093/treephys/tpae120","DOIUrl":"10.1093/treephys/tpae120","url":null,"abstract":"<p><p>Fine roots play a crucial role in soil nutrient and water acquisition, significantly contributing to tree growth. Fine roots with a high specific root length (SRL) and small diameter are often considered to help trees grow fast. However, inconsistencies in the literature do not provide a clear basis on the effect of root functional traits, such as SRL or root mass density (RMD), on tree growth rate in phylogenetically related trees. Our aim was to examine relationships between tree growth rate and root functional traits, using clones displaying different growth rates in a hybrid poplar plantation located in New Liskeard, ON, Canada. Fine roots (diameter < 2 mm) samples were collected using soil cores at depths of 0-20, 20-40 and 40-60 cm, and analyzed for morphological, chemical and architectural traits. High SRL and thin fine roots were associated with the least productive clones, which is not consistent with the root economics spectrum (RES) theory. However, the most productive clone had larger fine root diameter and higher root lignin concentrations, probably reducing root construction and maintenance costs and carbon losses. Therefore, at the 0-20 and 20-40 cm depths, tree growth rates showed positive correlations with root diameter and root lignin concentrations, but negative correlations with SRL and root soluble compounds concentration. Increasing RMD at the 0-20 cm depth promoted tree growth rates, showing the importance of soil exploration in the topsoil for tree growth. We conclude that fine root variation does not always follow the RES hypothesis and argue that the rapid growth rate of trees may also be driven by fine root growth in diameter and mass in phylogenetically related trees.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-10-03DOI: 10.1093/treephys/tpae116
Roberto L Salomón, Jaime Puértolas, José Carlos Miranda, Pilar Pita
{"title":"Nearly instantaneous stem diameter response to fluctuations in the atmospheric water demand.","authors":"Roberto L Salomón, Jaime Puértolas, José Carlos Miranda, Pilar Pita","doi":"10.1093/treephys/tpae116","DOIUrl":"10.1093/treephys/tpae116","url":null,"abstract":"<p><p>Changes in vapour pressure deficit can lead to the depletion and replenishment of stem water pools to buffer water potential variations in the xylem. Yet, the precise velocity at which stem water pools track environmental cues remains poorly explored. Nine eucalyptus seedlings grown in a glasshouse experienced high-frequency environmental oscillations and their stem radial variations (ΔR) were monitored at a 30-s temporal resolution in upper and lower stem locations and on the bark and xylem. The stem ΔR response to vapour pressure deficit changes was nearly instantaneous (<1 min), while temperature lagged behind stem ΔR. No temporal differences in the stem ΔR response were observed between locations. Punctual gravimetric measurements confirmed the synchrony between transpiration and stem ΔR dynamics. These results indicate (i) that stem-stored water can respond to the atmospheric evaporative demand much faster than commonly assumed and (ii) that the origin of the water released to the transpiration stream seems critical in determining time lags in stem water pool dynamics. Near-zero time lags may be explained by the high elasticity of eucalyptus woody tissues and the predominant water use from the xylem, circumventing the hydraulic radial barriers to water flow from/to the outer tissues.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The yellowhorn MYB transcription factor MYB30 is required for wax accumulation and drought tolerance.","authors":"Xiaojuan Liu, Zhuo Ban, Yingying Yang, Huihui Xu, Yifan Cui, Chenxue Wang, Quanxin Bi, Haiyan Yu, Libing Wang","doi":"10.1093/treephys/tpae111","DOIUrl":"10.1093/treephys/tpae111","url":null,"abstract":"<p><p>Yellowhorn (Xanthoceras sorbifolium Bunge) is an economically important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of electrophoretic mobility shift assay, yeast one hybrid assay and dual-luciferase assay demonstrated that XsMYB30 could directly and specifically bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1 and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-09-27DOI: 10.1093/treephys/tpae126
Franklin Alongi, Peter Petrík, Nadine K Ruehr
{"title":"Drought and heat stress interactions modify photorespiration and hydrogen peroxide content in Silver fir.","authors":"Franklin Alongi, Peter Petrík, Nadine K Ruehr","doi":"10.1093/treephys/tpae126","DOIUrl":"https://doi.org/10.1093/treephys/tpae126","url":null,"abstract":"<p><p>Photorespiration (PR) greatly reduces net carbon assimilation in trees (by c. 25%), but has received recent attention particular for its potential role in stress-signaling through the accumulation of hydrogen peroxide (H2O2), a stress signaling agent. Despite an increasing frequency of drought and heat events affecting forests worldwide, little is known about how concurrent abiotic stressors may interact to affect PR and subsequent H2O2 accumulation in trees. Here, we sought to identify how drought and a compounded one-day heat treatment individually and interactively affect PR (determined under variable O2) in Abies alba Mill. seedlings. Additionally, we quantified foliar H2O2 accumulation and enzymatic scavenging via peroxidase in relation to PR rates. We found drought stress to slightly increase PR (+5.2%) during mild-drought (12 days, Ψmd = -0.85 MPa), but ultimately to decrease PR (-13.6%) during severe-drought (26 days, Ψmd = -1.70 MPa) compared to the control, corresponding to increasing non-stomatal limitations of photosynthesis (i.e., decreased electron transport rate). The response of PR to heat stress was dependent on soil water availability as heat stress increased PR in control seedlings (+37.8%), but not in drought-stressed seedlings. Decreased PR during severe-drought corresponded to ~2x lower foliar H2O2 compared to the control. Despite increased PR under heat stress in control seedlings, foliar H2O2 decreased to near-zero likely due to enhanced scavenging as observed in ~2x greater peroxidase activity. Our results demonstrate that carbon loss to PR during drought stress can be highly dynamic, depending on the severity of soil dehydration. Additionally, increased PR under abiotic stress does not necessarily lead to accumulated H2O2, as tight regulation by scavenging enzymes instead minimize oxidative stress, reducing stress-signaling potential.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree physiologyPub Date : 2024-09-27DOI: 10.1093/treephys/tpae124
Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang
{"title":"Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming.","authors":"Jinbin Zheng, Yi He, Fucheng Wang, Rujing Zheng, Jiasheng Wu, Heikki Hänninen, Rui Zhang","doi":"10.1093/treephys/tpae124","DOIUrl":"https://doi.org/10.1093/treephys/tpae124","url":null,"abstract":"<p><p>Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing, and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis, and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In a chilling experiment, the delay appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}